Логика и алгоритмы -2010. Задание 5

- 72. Докажите, что множество $\{X | X \subset \mathbb{N} \land |X| = 2\}$ счетно.
- 73. Докажите, что множество всех интервалов в \mathbf{Q} (множестве рациональных чисел) счетно.
- 74. Дано счетное множество А. Докажите, что в А существует счетная последовательность попарно непересекающихся бесконечных подмножеств: $A_0, A_1, ..., A_n, ...$ (т.е. $A_i \cap A_j = \emptyset$) при $i \neq j$.
- 75. Дано счетное множество А.
- а) Докажите, что в A существует счетная строго возрастающая последовательность бесконечных подмножеств: $A_0 \subset A_1 \subset ... \subset A_n \subset ...$
- б) Докажите, что в A существует счетная строго возрастающая последовательность подмножеств: $A_0 \subset A_1 \subset ... \subset A_n \subset ...$, такая что все множества $A_{n+1} \setminus A_n$ бесконечны.
- 76. а) Докажите, что если $A \sim A'$, $B \sim B'$ и $A \cap B = A' \cap B' = \emptyset$, то $A \cup B \sim A' \cup B'$.
- б) Что можно утверждать в случае, если $A \sim A'$, $B \sim B'$ и $A \cap B \neq \emptyset$?
- 77. Докажите, что если $A \sim A'$ и $B \sim B'$, то $A \times B \sim A' \times B'$.
- 78. Дана конечная последовательность счетных множеств $A_1,...,A_n$. Докажите что произведение $A_1 \times ... \times A_n$ счетно.
- 79. Пусть f: $X \rightarrow Y$ функция; $A,B \subseteq X$. Докажите утверждения:
 - a) $f(A \cup B) = f(A) \cup f(B)$,
 - δ) f(A ∩ B) ⊆ f(A) ∩ f(B),
 - $B) f(A \setminus B) \subseteq f(A) \setminus f(B).$
- 80. Пусть $f: X \rightarrow Y$ инъекция; $A,B \subseteq X$. Докажите, что
 - a) $f(A \cap B) = f(A) \cap f(B)$,
 - δ) $f(A \setminus B) = f(A) \setminus f(B)$.
- 81. Пусть $f: X \to Y$ функция, такая что $f(A \cap B) = f(A) \cap f(B)$ для всех $A, B \subseteq X$. Докажите, что f инъекция.
- 82. Определение. Пусть $f: X \to Y$ функция, $U \subseteq Y$. Полным прообразом множества U относительно f называется множество $f^{-1}(U) := \{x \mid f(x) \in U\}$.

Пусть $f: X \to Y$ - функция; $A, B \subseteq Y$. Докажите утверждения:

- a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$,
- $\delta)\ f^{\text{-}1}(A {\cap} B) \subseteq f^{\text{-}1}(A) {\cap} f^{\text{-}1}(B),$
- $B) f^{-1}(A \setminus B) \subseteq f^{-1}(A) \setminus f^{-1}(B).$