Логика и алгоритмы -2010. Задание 6

- 83. Докажите, что если $B \lesssim C$, то $A^B \lesssim A^C$.
- 84. Докажите, что если $A \lesssim C$, то $A^B \lesssim C^B$.
- 85. Докажите, что если $A \cap B = \emptyset$, то $C^{A \cup B} \sim C^A \times C^B$.
- 86. Докажите, что $(A \times B)^C \sim A^C \times B^C$.
- 87. Докажите, что $(A^B)^C \sim A^{B \times C} \sim (A^C)^B$.
- 88. Докажите, что $(A^2)^* \sim (A^*)^2$.
- 89. а) Докажите, что если $A \cap B = \emptyset$, то $\mathcal{P}(A \cup B) \sim \mathcal{P}(A) \times \mathcal{P}(B)$.
- б) Выведите отсюда, что ${\bf R} \sim {\bf R} \times {\bf R}$ (теорема Кантора).
- 90. Докажите, что ${\bf R} \sim {\bf R}^n$ для всех натуральных n > 0.
- 91. а) Докажите, что $\mathcal{P}(A)^{B} \sim \mathcal{P}(A \times B) \sim \mathcal{P}(B)^{A}$.
- б) Докажите, что $\mathbf{R}^{\mathbf{N}} \sim \mathbf{R}$.
- 92. a) Докажите, что **N** × **R** ~ **R**
- б) Докажите, что $N^N \sim R$.
- 93. Докажите, что $\mathbf{R}^{\mathbf{R}} \sim \mathbf{N}^{\mathbf{R}} \sim \boldsymbol{\mathscr{P}}(\mathbf{R})$.
- 94. Докажите, что
- а) множество всех конечных подмножеств множества ${\bf N}$ счетно,
- б) множество всех конечных подмножеств множества ${\bf R}$ имеет мощность континуума,
- δ) множество всех счетных подмножеств множества ${\bf R}$ имеет мощность континуума.
- 95. Существует ли множество $X \subseteq \mathcal{P}(N)$ мощности континуума, такое что для всех $A, B \in X$ либо $A \subseteq B$, либо $B \subset A$?
- 96. Докажите, что если $X \subseteq \mathbf{R}^2$, то хотя бы одно из множеств X, $\mathbf{R} \setminus X$ имеет мощность континуума.
- 97. Докажите, что если $A_1 \cup ... \cup A_n = \mathbf{R}$, то хотя бы одно из множеств A_i имеет мощность континуума.
- 98. Докажите, что множество всех биекций из N на N имеет мощность континуума.
- 99. а) Найдите мощность множества $\{X \mid A \subseteq X \subseteq B\}$, если известно, что |A| = m, |B| = n > m, n натуральное.
- б) Найдите мощность множества $\{X | X \subseteq B \land A \cap X = \emptyset\}$, если известно, что |A| = m, |B| = n > m, n натуральное.
- 100. Найдите мощность множества всех сюрьекций из A на B, если известно, что |A| = n > 3, |B| = 3.
- 101. Дано конечное множество С мощности п. Сколькими способами можно выбрать в нем два непересекающихся подмножества?
- 102. Дано конечное множество С мощности п. Сколькими способами можно выбрать в нем два подмножества, одно из которых содержится в другом?