- **13.1.** Для каждой из следующих алгебр A дайте критерий обратимости ее элемента и найдите спектр каждого ее элемента: **1)** $A = \mathbb{C}[t]$; **2)** $A = \mathbb{C}[[t]]$; **3)** $A = \mathbb{C}(t)$.
- 13.2. 1) Придумайте пример линейного оператора в каком-нибудь векторном пространстве, спектр которого строго больше, чем множество его собственных значений.
- 2) Докажите, что такой оператор есть в любом бесконечномерном векторном пространстве.
- **13.3.** Пусть X нормированное пространство, L(X) алгебра всех линейных операторов в X. Обязательно ли подалгебра ограниченных операторов $\mathscr{B}(X) \subset L(X)$ спектрально инвариантна в L(X)?
- **13.4.** Пусть (X, μ) пространство с мерой, $f: X \to \mathbb{C}$ измеримая функция.
- 1) Приведите пример, показывающий, что значение f не обязано быть ее существенным значением.
- **2)** Приведите пример, показывающий, что существенное значение f не обязано быть ее значением.
- 3) Докажите, что если X = [a, b] отрезок с мерой Лебега, а f непрерывна, то множество ее значений совпадает с множеством ее существенных значений.
- **13.5.** Пусть A унитальная алгебра, $a \in A$ ее элемент и $L_a \colon A \to A, b \mapsto ab$ оператор умножения. Докажите, что $\sigma(a) = \sigma(L_a)$.
- **13.6. 1)** Пусть A унитальная алгебра и элемент $a \in A$ обратим слева и справа (т.е. существуют такие $a_{\ell}, a_r \in A$, что $a_{\ell}a = aa_r = 1$). Докажите, что a обратим.
- **2)** Приведите пример алгебры и ее элемента, который обратим слева (или справа), но не обратим. (См., однако, задачу 13.9.)
- **13.7.** Пусть A унитальная алгебра.
- 1) Пусть $a_1, \ldots, a_n \in A$ коммутирующие элементы. Докажите, что элемент $a_1 \cdots a_n$ обратим тогда и только тогда, когда все элементы a_1, \ldots, a_n обратимы.
- **2)** Покажите, что для некоммутирующих a_1, \ldots, a_n утверждение из п.1 перестает быть верным. (См., однако, задачу 13.9.)
- **13.8. 1)** Пусть $a, b \in \mathbb{C}$, |a| < 1 и |b| < 1. Положим $c = (1 ab)^{-1} = \sum_n (ab)^n$. Выразите элемент $(1 ba)^{-1}$ через a, b и c, не пользуясь коммутативностью умножения в \mathbb{C} .
- **2)** Пусть A унитальная алгебра, $a, b \in A$. Докажите, что элемент 1 ab обратим тогда и только тогда, когда элемент 1 ba обратим.
- **13.9.** Пусть A унитальная алгебра, $a, b \in A$.
- 1) Докажите, что $\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}.$
- **2)** Докажите, что если a или b обратим, то $\sigma(ab) = \sigma(ba)$.
- **3)** Приведите пример, показывающий, что в общем случае $\sigma(ab) \neq \sigma(ba)$. (См., однако, задачу 13.9.)
- **13.10** (необязательная задача). Пусть A конечномерная алгебра.
- 1) Докажите, что всякий элемент A, обратимый слева (или справа), обратим.
- **2)** Пусть $a_1, \ldots, a_n \in A$. Докажите, что элемент $a_1 \cdots a_n$ обратим тогда и только тогда, когда все элементы a_1, \ldots, a_n обратимы.
- **3)** Докажите, что $\sigma(ab) = \sigma(ba)$ для любых $a, b \in A$.
- 4^*) Докажите что пп. 1-3 сохраняют силу для нётеровых алгебр.
- **13.11.** Пусть A ненулевая унитальная алгебра, $a \in A$ нильпотентный элемент. Докажите, что $\sigma(a) = \{0\}$.