- **14.1.** Пусть X, Y, Z нормированные пространства. Докажите, что билинейный оператор $\varphi \colon X \times Y \to Z$ непрерывен тогда и только тогда, когда он ограничен в следующем смысле: существует такое $C \geqslant 0$, что $\|\varphi(x,y)\| \leqslant C\|x\|\|y\|$ для всех $x \in X, y \in Y$.
- **14.2.** Пусть A алгебра, снабженная нормой. Предположим, что умножение $A \times A \to A$ непрерывно. Докажите, что
- 1) на A существует субмультипликативная норма, эквивалентная исходной;
- **2)** если A унитальна, то на A существует субмультипликативная норма, эквивалентная исходной и удовлетворяющая условию ||1|| = 1.

 Πodc казка. В случае (2) рассмотрите операторы умножения $L_a: A \to A, b \mapsto ab$.

- **14.3. 1)** Докажите, что пополнение нормированной алгебры банахова алгебра.
- **2)** Докажите, что факторалгебра нормированной алгебры по замкнутому двустороннему идеалу нормированная алгебра.
- 14.4. Докажите, что норма

$$||f|| = \sum_{k=0}^{n} \frac{||f^{(k)}||_{\infty}}{k!}$$

на алгебре $C^n[a,b]$ субмультипликативна и эквивалентна норме $\|f\|=\max_{0\leqslant k\leqslant n}\|f^{(k)}\|_\infty$ из задачи 4.6. (Здесь, как обычно, $\|f\|_\infty=\sup_{t\in[a,b]}|f(t)|$ — равномерная норма.)

14.5. Пусть G — группа, снабженная топологией таким образом, что операция умножения $G \times G \to G$ непрерывна по каждому аргументу. Предположим, что операция $g \mapsto g^{-1}$ непрерывна в единице. Докажите, что она непрерывна всюду на G.

Из предыдущей задачи с учетом доказанного на лекции следует, что операция $a\mapsto a^{-1}$ на группе обратимых элементов любой банаховой алгебры непрерывна.

- **14.6. 1)** Докажите, что в унитальной банаховой алгебре $A \neq 0$ не может существовать таких элементов a, b, что [a, b] = ab ba = 1.
- **2)** Докажите, что на алгебре дифференциальных операторов вида $\sum_{k=0}^{n} a_k(x) \frac{d^k}{dx^k}$, где $a_k \in \mathbb{C}[x]$ (она называется *алгеброй Вейля*), не существует субмультипликативных полунорм, кроме тождественно нулевой.
- **14.7.** Пусть A унитальная нормированная (но не обязательно банахова) алгебра, $A^{\times} \subset A$ группа обратимых элементов. Верно ли, что
- 1) если $a \in A$ и ||a|| < 1, то $1 a \in A^{\times}$;
- 2) A^{\times} открыто в A;
- **3)** отображение $A^{\times} \to A^{\times}$, $a \mapsto a^{-1}$ непрерывно?
- 14.8. Верна ли теорема Гельфанда-Мазура для неполных нормированных алгебр?
- **14.9.** Верно ли, что r(a) = ||a|| для любого $a \in A$, если **1)** $A = L^{\infty}(X, \mu)$? **2)** $A = C^{n}[a, b]$?
- **14.10** (оператор взвешенного сдвига). Пусть $H = \ell^2$ и $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in \ell^{\infty}$. Оператор

$$T_{\alpha}: H \to H, \quad T_{\alpha}(x) = (0, \alpha_1 x_1, \alpha_2 x_2, \ldots)$$

называется оператором взвешенного сдвига.

- **1)** Вычислите $||T_{\alpha}||$.
- **2)** Вычислите $r(T_{\alpha})$. Для каких последовательностей $\alpha \in \ell^{\infty}$ оператор T_{α} квазинильпотентен? Приведите конкретный пример такой последовательности.

14.11 (оператор Вольтерра). Пусть $I = [a, b], H = L^2(I)$ и $K \in L^2(I \times I)$. Оператор Вольтерра $V_K \colon L^2(I) \to L^2(I)$ задается формулой

$$(V_K f)(x) = \int_a^x K(x, y) f(y) \, dy$$

(обратите внимание, что это частный случай интегрального оператора Гильберта-Шмидта из задачи 2.12).

- 1) Докажите, что если функция K ограничена, то V_K квазинильпотентен.
- 2^*) Докажите, что V_K квазинильпотентен для любой $K \in L^2(I \times I)$.

Функциональные алгебры на плоских множествах

Пусть $K \subset \mathbb{C}$ — компактное подмножество. Рассмотрим следующие подалгебры в C(K):

$$\mathscr{P}(K)=\overline{\left\{p|_K:p-\text{многочлен}
ight\}};$$
 $\mathscr{R}(K)=\overline{\left\{r|_K:r-\text{рациональная функция с полюсами вне }K
ight\}};$ $\mathscr{A}(K)=\left\{f\in C(K):f\text{ голоморфна на }\mathrm{Int }K\right\}$

(черта наверху означает замыкание в C(K)). Очевидно, $\mathscr{P}(K) \subset \mathscr{R}(K)$.

- **14.12.** Докажите, что $\mathscr{A}(K)$ замкнутая подалгебра в C(K). Как следствие, $\mathscr{R}(K) \subset \mathscr{A}(K)$.
- **14.13** (дисковая алгебра). Пусть $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}.$
- 1) Докажите, что $\mathscr{P}(\overline{\mathbb{D}}) = \mathscr{R}(\overline{\mathbb{D}}) = \mathscr{A}(\overline{\mathbb{D}}).$
- **2)** Постройте изометрический изоморфизм $\mathscr{P}(\mathbb{T}) \cong \mathscr{A}(\overline{\mathbb{D}})$.
- **14.14. 1)** Докажите, что $\mathscr{P}(\mathbb{T}) \neq \mathscr{R}(\mathbb{T})$.
- **2)** Пользуясь теоремой Вейерштрасса (любая непрерывная 2π -периодическая функция на прямой приближается по равномерной норме тригонометрическими многочленами), докажите, что $\mathscr{R}(\mathbb{T}) = C(\mathbb{T})$.
- **14.15.** 1) Докажите, что $\mathcal{R}(K)$ спектрально инвариантна в C(K).
- **2)** Всегда ли $\mathscr{P}(K)$ спектрально инвариантна в C(K)?
- **14.16.** 1) Докажите, что если $\mathscr{P}(K) = \mathscr{R}(K)$, то $\mathbb{C} \setminus K$ связно.
- **2)** Докажите, что если $\mathbb{C} \setminus K$ связно, то $\mathscr{P}(K) = \mathscr{R}(K)$. (На самом деле верно большее: $\mathscr{P}(K) = \mathscr{A}(K)$, но это уже нетривиальная теорема Мергеляна.)
- **14.17** (швейцарский сыр). Пусть $K = \overline{\mathbb{D}} \setminus \bigcup_{i=1}^{\infty} D_i$, где D_i открытые круги с попарно не пересекающимися замыканиями, выбранные таким образом, что $\sum_i r_i < \infty$ (где r_i радиус D_i) и Int $K = \emptyset$. Докажите, что $\mathcal{R}(K) \neq C(K)$ (несмотря на то, что Int $K = \emptyset$).

 $\Pi o d c \kappa a z \kappa a$. Постройте ненулевую меру μ на K, сосредоточенную на объединении границ кругов D_i и такую, что $\int_K f \, d\mu = 0$ для любой $f \in \mathscr{R}(K)$.