- **23.1.** Пусть e_n числовая последовательность с единицей на n-м месте и нулем на остальных. Исследуйте последовательность (e_n) на слабую сходимость в пространствах c_0 и ℓ^p ($1 \le p < \infty$).
- 23.2. Докажите, что последовательность непрерывных функций на отрезке слабо сходится тогда и только тогда, когда она равномерно ограничена и сходится поточечно.
- **23.3.** Пусть T_ℓ и T_r операторы левого и правого сдвига в ℓ^2 . Исследуйте последовательности (T_ℓ^n) и (T_r^n) на сходимость
- 1) по норме в $\mathscr{B}(\ell^2)$;
- **2)** в сильной операторной топологии на $\mathscr{B}(\ell^2)$;
- **3)** в слабой операторной топологии на $\mathscr{B}(\ell^2)$.
- **23.4.** Докажите, что локально выпуклое пространство нормируемо тогда и только тогда, когда в нем есть ограниченная окрестность нуля.
- **23.5.** Пусть X хаусдорфово локально выпуклое пространство, топология которого порождена последовательностью полунорм $\{\|\cdot\|_n : n \in \mathbb{N}\}$. Докажите, что формула

$$|x| = \sum_{n} \frac{1}{2^n} \frac{\|x\|_n}{1 + \|x\|_n}$$

задает псевдонорму на X, и что топология, порожденная этой псевдонормой, совпадает с исходной топологией на X.

23.6. Пусть (X, μ) — пространство с мерой. Для каждого $p \in (0, 1)$ определим векторное пространство $L^p(X, \mu)$ так же, как и при $p \geqslant 1$. Для $f \in L^p(X, \mu)$ положим

$$|f|_p = \int_X |f(x)|^p d\mu(x).$$

- 1) Докажите, что $|\cdot|_p$ псевдонорма на $L^p(X,\mu)$.
- **2)** Докажите, что $L^p(X,\mu)$ локально выпукло лишь в том случае, когда оно конечномерно.
- 3) Докажите, что $L^p[0,1]^* = \{0\}.$
- **23.7.** Пусть (X, μ) пространство с конечной мерой. Обозначим через $L^0(X, \mu)$ пространство классов эквивалентности μ -измеримых функций на X (как обычно, функции эквивалентны, если они равны почти всюду). Для $f \in L^0(X, \mu)$ положим

$$|f|_0 = \int_X \frac{|f(x)|}{1 + |f(x)|} d\mu(x).$$

- **1)** Докажите, что $|\cdot|_0$ псевдонорма на $L^0(X,\mu)$.
- **2)** Докажите, что сходимость по псевдонорме $|\cdot|_0$ это то же самое, что сходимость по мере.
- **3)** Докажите, что $L^0(X,\mu)$ локально выпукло лишь в том случае, когда оно конечномерно.
- **4)** Докажите, что $L^0[0,1]^* = \{0\}.$
- **23.8** (Пространства Фреше). Пусть X метризуемое локально выпуклое пространство. Докажите, что следующие утверждения эквивалентны:
- 1) X полно как топологическое векторное пространство;
- (2) X секвенциально полно как топологическое векторное пространство;
- 3) для любой (или, что эквивалентно, для некоторой) метрики ρ , порождающей топологию на X и инвариантной относительно сдвигов, (X, ρ) полное метрическое пространство.

- **23.9.** Докажите, что следующие локально выпуклые пространства являются пространствами Фреше:
- 1) пространство всех последовательностей $\mathbb{C}^{\mathbb{N}}$;
- **2)** C(X) (где X локально компактное σ -компактное топологическое пространство например, открытое подмножество в \mathbb{R}^n или любое многообразие);
- 3) $C^{\infty}(\mathbb{R});$
- 4) пространство голоморфных функций $\mathcal{O}(U)$ на открытом множестве $U \subset \mathbb{C}$.
- **23.10. 1)** Пусть X локально выпуклое пространство. Докажите, что слабая топология на X не сильнее исходной.
- **2)** Пусть X нормированное пространство. Докажите, что слабая* топология на X* не сильнее, чем топология, задаваемая стандартной нормой.
- **23.11.** Пусть $\langle X, Y \rangle$ дуальная пара векторных пространств. Докажите, что
- 1) $\dim X < \infty \iff \dim Y < \infty \iff$ слабая топология $\sigma(X,Y)$ нормируема;
- **2)** слабая топология $\sigma(X,Y)$ метризуема \iff размерность Y не более чем счетна;
- **3)** слабая топология на бесконечномерном нормированном пространстве и слабая* топология на пространстве, сопряженном к бесконечномерному банахову пространству, неметризуемы.
- **23.12.** Докажите, что слабая топология на пространстве $\mathbb{C}^{\mathbb{N}}$ совпадает с исходной.
- **23.13.** Пусть X и Y нормированные пространства. Обозначим через SOT, WOT и NT соответственно сильную операторную топологию, слабую операторную топологию и топологию, задаваемую операторной нормой на $\mathcal{B}(X,Y)$.
- 1) Докажите, что WOT \subseteq SOT \subseteq NT.
- 2) Докажите, что если Y бесконечномерно, то WOT \neq SOT.
- 3) Докажите, что если X бесконечномерно, то $SOT \neq NT$.
- **23.14.** Пусть X, Y нормированные пространства. Докажите, что подмножество $M \subset \mathcal{B}(X, Y)$ равностепенно непрерывно тогда и только тогда, когда оно ограничено по операторной норме.
- **23.15.** Пусть $(X_i)_{i \in I}$ семейство локально выпуклых пространств и $X = \prod_{i \in I} X_i$. Для каждого $i \in I$ обозначим через $\pi_i \colon X \to X_i$ стандартную проекцию. Выберем определяющее семейство полунорм P_i на X_i для каждого i, и рассмотрим семейство полунорм $\{p_i \circ \pi_i : p_i \in P_i, i \in I\}$ на X. Докажите, что порожденная им топология совпадает с тихоновской.
- **23.16** (пополнение). Пусть X хаусдорфово локально выпуклое пространство, топология которого порождена семейством полунорм P. Для каждого $p \in P$ положим $X_p^0 = X/p^{-1}(0)$ и будем рассматривать X_p^0 как нормированное пространство относительно факторнормы полунормы p. Обозначим через X_p пополнение X_p^0 . Докажите, что отображение

$$X \to \prod_{p \in P} X_p, \quad x \mapsto (x + p^{-1}(0))_{p \in P}$$

топологически инъективно. Выведите отсюда существование пополнения пространства X.