Пусть $\{x_n\}$ — последовательность действительных чисел. Для каждого $n \in \mathbb{N}$ положим $a_n = \inf_{k \geqslant n} x_k$ и $b_n = \sup_{k \geqslant n} x_k$. Заметим, что последовательность $\{a_n\}$ не убывает, а последовательность $\{b_n\}$ не возрастает. Следовательно, они обе имеют пределы, причем $\lim_{n \to \infty} a_n$ либо конечен, либо равен $+\infty$, а $\lim_{n \to \infty} b_n$ либо конечен, либо равен $-\infty$.

Определение 3.1. Число $\lim_{n\to\infty} (\inf_{k\geqslant n} x_k) \in \mathbb{R} \cup \{+\infty\}$ называется нижним пределом последовательности $\{x_n\}$ и обозначается $\lim_{n\to\infty} x_n$ либо $\liminf_{n\to\infty} x_n$. Число $\lim_{n\to\infty} (\sup_{k\geqslant n} x_k) \in \mathbb{R} \cup \{-\infty\}$ называется верхним пределом последовательности $\{x_n\}$ и обозначается $\overline{\lim}_{n\to\infty} x_n$ либо $\limsup_{n\to\infty} x_n$.

- **3.1.** Найдите нижний и верхний пределы последовательностей: **1)** $x_n = (-1)^n$; **2)** $x_n = (-1)^n n$; **3)** $x_n = (1 (-1)^n) n$; **4)** $x_n = ((-1)^n 1) n + 1$; **5)** $x_n = (-1)^n \left(1 + \frac{1}{n}\right)^n + \sin(\pi n/4)$; **6)** $\{x_n\}$ последовательность всех рациональных чисел на отрезке [0,1], занумерованных произвольным образом.
- **3.2.** Пусть $\{x_n\}$ последовательность действительных чисел и $a \in \mathbb{R} \cup \{\pm \infty\}$. Докажите, что следующие утверждения эквивалентны:
- 1) для любой окрестности U точки a множество $\{n \in \mathbb{N} : x_n \in U\}$ бесконечно;
- 2) некоторая подпоследовательность последовательности $\{x_n\}$ стремится к a.

Здесь под окрестностью $+\infty$ понимается любой луч вида $(c, +\infty)$, а под окрестностью $-\infty$ — любой луч вида $(-\infty, c)$, где $c \in \mathbb{R}$.

Определение 3.2. Точку $a \in \mathbb{R} \cup \{\pm \infty\}$, удовлетворяющую любому из эквивалентных условий предыдущей задачи, называют *частичным пределом* последовательности $\{x_n\}$.

- 3.3. Найдите все частичные пределы последовательностей из задачи 3.1.
- 3.4. Найдите все частичные пределы последовательности

$$\frac{1}{2}, 1 + \frac{1}{2}, \frac{1}{3}, 1 + \frac{1}{3}, \frac{1}{2} + \frac{1}{3}, \frac{1}{4}, 1 + \frac{1}{4}, \frac{1}{2} + \frac{1}{4}, \frac{1}{3} + \frac{1}{4}, \dots, \frac{1}{n}, 1 + \frac{1}{n}, \frac{1}{2} + \frac{1}{n}, \dots, \frac{1}{n-1} + \frac{1}{n}, \dots$$

- **3.5. 1)** Докажите, что любая числовая последовательность $\{a_n\}$ содержится в множестве частичных пределов некоторой числовой последовательности $\{x_n\}$.
- 2) Докажите, что если $\{a_n\}$ и $\{x_n\}$ последовательности, связанные друг с другом как в п. 1, то множество частичных пределов последовательности $\{a_n\}$ содержится в множестве частичных пределов последовательности $\{x_n\}$.
- **3.6.** Докажите, что нижний (соответственно, верхний) предел последовательности это наименьший (соответственно, наибольший) из ее частичных пределов.
- **3.7.** Докажите, что следующие свойства последовательности $\{x_n\}$ эквивалентны:
- 1) $\{x_n\}$ имеет предел (либо конечный, либо равный $\pm \infty$);
- 2) $\{x_n\}$ имеет ровно один частичный предел (либо конечный, либо равный $\pm \infty$);
- 3) $\underline{\lim}_{n\to\infty} x_n = \overline{\lim}_{n\to\infty} x_n$.

Отметим, что если эти условия выполнены, то $\lim_{n\to\infty} x_n = \underline{\lim}_{n\to\infty} x_n = \overline{\lim}_{n\to\infty} x_n$.

3.8. Докажите непрерывность функции $f(x) = \sqrt{x}$ на $[0, +\infty)$.

- 3.9 (для сдавших задачу 1.3). Докажите непрерывность и монотонность функций
- 1) $f(x) = a^x$ на \mathbb{R} , где a > 0; 2) $f(x) = x^{\alpha}$ на $(0, +\infty)$, где $\alpha \in \mathbb{R}$.

3.10. Докажите, что
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

3.11. Найдите пределы **1)**
$$\lim_{n\to\infty} \frac{n^n}{(n+1)^{n+1}}$$
 и **2)** $\lim_{x\to+\infty} \left(\frac{x+3}{x-2}\right)^{2x+1}$.

- 3.12. 1) Верно ли, что непрерывная функция на интервале ограничена?
- **2)** Верно ли, что непрерывная ограниченная функция на интервале достигает максимума и минимума?
- 3.13. Докажите, что функция Дирихле

$$D(x) = \begin{cases} 1, & \text{если } x \in \mathbb{Q}; \\ 0, & \text{если } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

всюду разрывна.

3.14. Докажите, что функция Римана

$$R(x)=\left\{egin{array}{ll} rac{1}{q}, & ext{если } x=rac{p}{q}\in\mathbb{Q}- ext{несократимая дробь}; \\ 0, & ext{если } x\in\mathbb{R}\setminus\mathbb{Q} \end{array}
ight.$$

непрерывна в иррациональных точках и разрывна в рациональных.

- **3.15.** Докажите, что на экваторе найдутся две диаметрально противоположные точки, температура в которых одинакова.
- **3.16*.** На сковородке лежат два блина. Докажите, что их можно разрезать одним взмахом ножа так, что каждый распадется на два куска одинаковой площади¹.

¹Строго говоря, мы еще не знаем, что такое площадь, поэтому считайте, что блины многоугольные.