5 Action of a groups on a set.

$\diamond 5.1 G$ is a group, X is a set. Action of the group G on the set X is a homomorphism $\phi: G \rightarrow S(X)$. $\phi(g)(x)$ is usually denoted as $\phi_{g}(x)$ or $g \cdot x$ or $g(x)$. Prove that this definition is equivalent to the following: Action of the group G on the set X is a map $\phi: G \times X \rightarrow X$ (we shall also denote $\phi(g, x)$ by $g \cdot x$), such that

$$
\begin{aligned}
& 1^{o} \quad \forall a, b \in G \quad \forall x \in X \quad a \cdot(b \cdot x)=(a b) \cdot x . \\
& 2^{o} \forall x \in X \quad e \cdot x=x
\end{aligned}
$$

$\diamond 5.2$ Let G act on $X, x \in X$. The set $G \cdot x=\{g \cdot x, g \in G\}$ is called the orbit of x. (So the action is transitive $\Leftrightarrow X$ is the orbit; in this case the orbit is unique.) The group $G_{x}=\{g \in G, \quad g \cdot x=x\}$ is called the stabilizer of x. Ker $\phi=\{g \in G, \quad g \cdot x=x \quad \forall x \in X\}=\bigcap_{x \in X} G_{x}$ is called the kernel of this action. The action is called faithful if $\operatorname{Ker} \phi=\{e\}$.
(1) Prove that G_{x} is indeed a subgroup of G.
(2) Prove that there is a natural bijection between the orbit $G \cdot x$ and the quotient set G / G_{x}. Deduce from this that if the stabilizer G_{x} is a subgroup of finite index, then $|G \cdot x|=\left(G: G_{x}\right)$.
(3) Prove that $G_{g \cdot x}=g G_{x} g^{-1}$. (Prove first that for any subgroup $H \subset G, \forall g \in G$ the set $g H g^{-1}=\left\{g h g^{-1}, \quad h \in H\right\}$ is a subgroup in G.) Deduce from this that the stabilizers G_{x} and $G_{g \cdot x}$ are isomorphic.
(4) The set of all orbits of an action of a group G on a set X is called the quotient set X / G (sometimes denoted by $G \backslash X)$. Let G and X be finite. For each orbit $c \in X / G$ fix one element $x_{c} \in c$. Prove the orbit formula:

$$
|X|=\sum_{c \in X / G}\left(G: G_{x_{c}}\right)
$$

\diamond 5.3 Find the orbits of the following actions of D_{6} and verify the orbit formula and the formula $|G \cdot x|=\left(G: G_{x}\right)$ for each orbit.
(1) D_{6} acts on 6 vertices of the hexagon.
(2) D_{6} acts on 9 diagonals of the hexagon.
(3) D_{6} acts on 36 pairs (A, d), where A is a vertex of the hexagon and d is its short diagonal.
(4) D_{6} acts on unordered pairs of different vertices of the hexagon.
(5) D_{6} acts on unordered triples of different vertices of the hexagon.
$\diamond 5.4$ Two actions of a group G on sets X and Y are called equivalent if \exists such a bijection $f: X \rightarrow Y$ that the diagram

is commutative. (This simply means that $\forall g \in G \quad f(g \cdot x)=g \cdot f(x)$.)
(1) Prove that the actions of D_{5} on the sides and on the vertices and on the diagonals of the pentagon are equivalent.
(2) Consider tree actions of D_{6} : on the sides, on the vertices and on the short diagonals of the hexagon. Prove that two of these three actions are equivalent and the third is not equivalent to them.
$\diamond 5.5$ Let H be a subgroup in G. Consider the action of H on G by the left multiplication: $h \cdot g=h g(h \in H$ and $g \in G$). Prove that it is the action (in the sense of 5.1) and that the orbits are right cosets. (This explains why the notation $H \backslash G$ is preferable here.)
$\diamond 5.6$ Prove that the conjugation action of G on G defined by $g \cdot x=g x g^{-1}(g, x \in G)$ is the action (in the sense of $\diamond 5.1$) and that the fixed elements of this action are the elements of the center $Z(G)$. Prove that the kernel of this action $\operatorname{Ker} \phi$ (see the definition in $\diamond 5.2$) is also $Z(G)$.
$\diamond 5.7$ (1) Prove that $\forall g, x \in G \operatorname{ord}(x)=\operatorname{ord}\left(g x g^{-1}\right)$. Find a counterexample for the inverse statement.
(2) Two permutations in S_{n} are conjugate \Leftrightarrow they are of the same cycle type.
(3) Find the orbits of the conjugation action of A_{4} on itself. Use it to find a normal subgroup in A_{4}.
(4) Find the orbits of the conjugation action of A_{5} on itself. Use it to prove that A_{5} is simple.
\diamond 5.8 Prove that $G / Z(G)$ can not be a cyclic group.
$\diamond 5.9$ (1) Let $|G|=p^{n}$ where p is prime. Prove that $Z(G) \neq \quad\{e\}$. (Use the conjugation action of G on itself and use $\diamond 5.6$ and $\diamond 5.2 .4$.)
(2) Prove that if $|G|=p^{2}$ then G is abelian.
(3) Find a non-abelian group of order $p^{3}, p-\operatorname{prime}$. (Find it in $\operatorname{SL}\left(3, \mathbb{F}_{p}\right)$.)
$\diamond 5.10(1)|G|=15 \Rightarrow G$ is abelian. (Use the conjugation action of G on itself and on the set of its subgroups.)
(2) Find a non-abelian group of order 21. (Find it in $\operatorname{GL}\left(2, \mathbb{F}_{7}\right)$.)
(3) What is the difference between 15 and 21? For which pairs of prime p, q exists a non-abelian group of order $p q$?
$\diamond \mathbf{5 . 1 1}$ (1) Write down the list of all known to you finite groups of order less then 30 .
(2) Prove that your list is complete with the exception for the orders $12,16,24$.
(3) $(* *)$ Try to classify groups of order $12,16,24$.
$\diamond 5.12$ Let \mathbb{K} be a field. The multiplicative group \mathbb{K}^{*} acts on $\mathbb{K} \times \mathbb{K}$ by $\lambda \cdot(x ; y)=(\lambda x ; \lambda y)$. The quotient set for this action is called projective line over \mathbb{K} and is denoted by $\mathbb{P}^{1}(\mathbb{K})$. The orbit of $(x ; y)$ is denoted by $(x: y)$. Prove that the mapping $(x: y) \mapsto \frac{x}{y}$ is a bijection between $\mathbb{P}^{1}(\mathbb{K}) \backslash\{(1: 0)\}$ and \mathbb{K}.
$\diamond 5.13$ Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}(2, \mathbb{K})$. Prove that $A \cdot(x: y)=(a x+b y: c x+d y)$ defines an action of $\operatorname{PSL}(2, \mathbb{K})$ on $\mathbb{P}^{1}(\mathbb{K})$. Prove that $\forall M_{1}, M_{2}, M_{3}, N_{1}, N_{2}, N_{3} \in \mathbb{P}^{1}(\mathbb{K})$ there exists unique $g \in \operatorname{PSL}(2, \mathbb{K})$ such that $g \cdot M_{i}=N_{i}, i=1,2,3$.
$\diamond 5.14$ (1) Prove that $\operatorname{PSL}\left(2, \mathbb{F}_{3}\right) \cong S_{4}$.
(2) Find all the subgroups of $\operatorname{PSL}\left(2, \mathbb{F}_{5}\right)$ isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Study the conjugation action of $\operatorname{PSL}\left(2, \mathbb{F}_{5}\right)$ on the set of such subgroups. Use this action to prove that $\operatorname{PSL}\left(2, \mathbb{F}_{5}\right) \cong A_{5}$.
$\diamond 5.15$ Consider an action of a group H on a group N by automorphisms, i.e. $\varphi: H \rightarrow$ Aut N. Define an operation $*$ on on $G=N \times H$ by $\left(n_{1} ; h_{1}\right) *\left(n_{2} ; h_{2}\right)=\left(n_{1} \varphi_{h_{1}}\left(n_{2}\right) ; h_{1} h_{2}\right)$. Prove that G becomes a group under * and the sets $\widetilde{N}=\left\{\left(n ; e_{H}\right), n \in N\right\}$ and $\widetilde{H}=\left\{\left(e_{N} ; h\right), h \in H\right\}$ are subgroups in $G, \widetilde{N} \cong N, \widetilde{H} \cong H, N$ is normal in G and G is a semidirect product of N and H. Prove that the conjugation action of \widetilde{H} on \widetilde{N} is exactly φ.

