5 Action of a groups on a set.

 \diamond 5.1 G is a group, X is a set. Action of the group G on the set X is a homomorphism $\phi: G \to S(X)$. $\phi(g)(x)$ is usually denoted as $\phi_g(x)$ or $g \cdot x$ or g(x). Prove that this definition is equivalent to the following: Action of the group G on the set X is a map $\phi: G \times X \to X$ (we shall also denote $\phi(g, x)$ by $g \cdot x$), such that

 $1^o \ \forall a, b \in G \quad \forall x \in X \quad a \cdot (b \cdot x) = (ab) \cdot x.$

 $2^o \ \forall x \in X \quad e \cdot x = x$

 \diamond 5.2 Let G act on X, x ∈ X. The set $G \cdot x = \{g \cdot x, g \in G\}$ is called the *orbit* of x. (So the action is transitive \Leftrightarrow X is the orbit; in this case the orbit is unique.) The group $G_x = \{g \in G, g \cdot x = x\}$ is called the *stabilizer* of x. Ker $\phi = \{g \in G, g \cdot x = x \ \forall x \in X\} = \bigcap_{x \in X} G_x$ is called the *kernel* of this action. The action is called *faithful* if Ker $\phi = \{e\}$.

- (1) Prove that G_x is indeed a subgroup of G.
- (2) Prove that there is a natural bijection between the orbit $G \cdot x$ and the quotient set G/G_x . Deduce from this that if the stabilizer G_x is a subgroup of finite index, then $|G \cdot x| = (G : G_x)$.
- (3) Prove that $G_{g \cdot x} = gG_x g^{-1}$. (Prove first that for any subgroup $H \subset G$, $\forall g \in G$ the set $gHg^{-1} = \{ghg^{-1}, h \in H\}$ is a subgroup in G.) Deduce from this that the stabilizers G_x and $G_{g \cdot x}$ are isomorphic.
- (4) The set of all orbits of an action of a group G on a set X is called the quotient set X/G (sometimes denoted by $G\setminus X$). Let G and X be finite. For each orbit $c \in X/G$ fix one element $x_c \in c$. Prove the orbit formula:

$$|X| = \sum_{c \in X/G} (G : G_{x_c}).$$

♦ 5.3 Find the orbits of the following actions of D_6 and verify the orbit formula and the formula $|G \cdot x| = (G : G_x)$ for each orbit.

- (1) D_6 acts on 6 vertices of the hexagon.
- (2) D_6 acts on 9 diagonals of the hexagon.
- (3) D_6 acts on 36 pairs (A, d), where A is a vertex of the hexagon and d is its short diagonal.
- (4) D_6 acts on unordered pairs of different vertices of the hexagon.
- (5) D_6 acts on unordered triples of different vertices of the hexagon.

♦ 5.4 Two actions of a group G on sets X and Y are called equivalent if \exists such a bijection $f: X \to Y$ that the diagram

$$\begin{array}{cccc} G \times X & \xrightarrow{\operatorname{Id}_G \times f} & G \times Y \\ & & & \downarrow^{\phi_X} & & \downarrow^{\phi_Y} \\ & & X & \xrightarrow{f} & Y \end{array}$$

is commutative. (This simply means that $\forall g \in G \ f(g \cdot x) = g \cdot f(x)$.)

- (1) Prove that the actions of D_5 on the sides and on the vertices and on the diagonals of the pentagon are equivalent.
- (2) Consider tree actions of D_6 : on the sides, on the vertices and on the short diagonals of the hexagon. Prove that two of these three actions are equivalent and the third is not equivalent to them.

♦ 5.5 Let *H* be a subgroup in *G*. Consider the action of *H* on *G* by the left multiplication: $h \cdot g = hg$ ($h \in H$ and $g \in G$). Prove that it is the action (in the sense of 5.1) and that the orbits are right cosets. (This explains why the notation $H \setminus G$ is preferable here.)

◊ **5.6** Prove that the *conjugation* action of G on G defined by $g \cdot x = gxg^{-1}$ ($g, x \in G$) is the action (in the sense of $\diamond 5.1$) and that the fixed elements of this action are the elements of the center Z(G). Prove that the kernel of this action Ker ϕ (see the definition in $\diamond 5.2$) is also Z(G).

♦ 5.7 (1) Prove that $\forall g, x \in G$ ord $(x) = \text{ord}(gxg^{-1})$. Find a counterexample for the inverse statement.

- (2) Two permutations in S_n are conjugate \Leftrightarrow they are of the same cycle type.
- (3) Find the orbits of the conjugation action of A_4 on itself. Use it to find a normal subgroup in A_4 .
- (4) Find the orbits of the conjugation action of A_5 on itself. Use it to prove that A_5 is simple.
- \diamond 5.8 Prove that G/Z(G) can not be a cyclic group.
- \diamond 5.9 (1) Let $|G| = p^n$ where p is prime. Prove that $Z(G) \neq \{e\}$. (Use the conjugation action of G on itself and use \diamond 5.6 and \diamond 5.2.4.)
 - (2) Prove that if $|G| = p^2$ then G is abelian.
 - (3) Find a non-abelian group of order p^3 , p prime. (Find it in $SL(3, \mathbb{F}_p)$.)
- \diamond 5.10 (1) $|G| = 15 \Rightarrow G$ is abelian. (Use the conjugation action of G on itself and on the set of its subgroups.)
 - (2) Find a non-abelian group of order 21. (Find it in $GL(2, \mathbb{F}_7)$.)
 - (3) What is the difference between 15 and 21? For which pairs of prime p, q exists a non-abelian group of order pq?
- \diamond 5.11 (1) Write down the list of all known to you finite groups of order less then 30.
 - (2) Prove that your list is complete with the exception for the orders 12, 16, 24.
 - (3) (**) Try to classify groups of order 12, 16, 24.

◊ 5.12 Let K be a field. The multiplicative group K^{*} acts on K × K by $\lambda \cdot (x; y) = (\lambda x; \lambda y)$. The quotient set for this action is called *projective line over* K and is denoted by $\mathbb{P}^1(\mathbb{K})$. The orbit of (x; y) is denoted by (x: y). Prove that the mapping $(x: y) \mapsto \frac{x}{y}$ is a bijection between $\mathbb{P}^1(\mathbb{K}) \setminus \{(1:0)\}$ and K.

♦ 5.13 Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ∈ PSL(2, K). Prove that $A \cdot (x : y) = (ax + by : cx + dy)$ defines an action of PSL(2, K) on $\mathbb{P}^1(\mathbb{K})$. Prove that $\forall M_1, M_2, M_3, N_1, N_2, N_3 \in \mathbb{P}^1(\mathbb{K})$ there exists unique $g \in PSL(2, \mathbb{K})$ such that $g \cdot M_i = N_i, i = 1, 2, 3$.

- \diamond **5.14** (1) Prove that $PSL(2, \mathbb{F}_3) \cong S_4$.
 - (2) Find all the subgroups of $PSL(2, \mathbb{F}_5)$ isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Study the conjugation action of $PSL(2, \mathbb{F}_5)$ on the set of such subgroups. Use this action to prove that $PSL(2, \mathbb{F}_5) \cong A_5$.

 \diamond 5.15 Consider an action of a group *H* on a group *N* by automorphisms, i.e. $\varphi : H \to \operatorname{Aut} N$. Define an operation \ast on on *G* = *N* × *H* by $(n_1; h_1) \ast (n_2; h_2) = (n_1 \varphi_{h_1}(n_2); h_1 h_2)$. Prove that *G* becomes a group under \ast and the sets $\widetilde{N} = \{(n; e_H), n \in N\}$ and $\widetilde{H} = \{(e_N; h), h \in H\}$ are subgroups in *G*, $\widetilde{N} \cong N$, $\widetilde{H} \cong H$, *N* is normal in *G* and *G* is a semidirect product of *N* and *H*. Prove that the conjugation action of \widetilde{H} on \widetilde{N} is exactly φ .