## 7 Quotient ring.

$\diamond$ 7.1 Let $I$ be an ideal of $R$. Since $I$ is an abelian subgroup of $R$ under addition, $R / I$ is again the abelian group under addition. Define multiplication on $R / I$ by $(a+I) \cdot(b+I)=a b+I$. Prove that
a) this definition is correct (i.e. if $a+I=a_{1}+I, b+I=b_{1}+I$, then $\left.(a+I) \cdot(b+I)=\left(a_{1}+I\right) \cdot\left(b_{1}+I\right)\right)$;
b) $R / I$ is a commutative associative ring with unity. (This ring is called the quotient ring); c) the canonical homomorphism $\varphi: R \rightarrow R / I$, defined by $\varphi(x)=x+I$ is surjective;
d) $\forall f: R \rightarrow S$ - homomorphism $\exists i: R / \operatorname{Ker} f \rightarrow S$ - such an injective homomorphism that the diagram

is commutative;
e) $R / \operatorname{Ker} f \cong \operatorname{Im} f$;
f) there is one-to-one correspondence between ideals of $R$ containing $I$ and ideals of $R / I$;
g) let $f: R \rightarrow S$ be such a homomorphism that Ker $f \subset I$, then $\exists \bar{f}: R / I \rightarrow S$ - such a homomorphism that the diagram

is commutative.
$\diamond 7.2$ Let $R$ and $S$ be some rings.
a) Prove that the sets $R \times\{0\}=\{(a, 0), \quad a \in R\}$ and $\{0\} \times S=\{(0, b), \quad b \in S\}$ are ideals in $R \times S$. Are these ideals principal?
b) Prove that the quotient rings $(R \times S) /(R \times\{0\}) \cong S$ and $(R \times S) /(\{0\} \times S) \cong R$.
$\diamond$ 7.3 Let $I$ and $J$ be two non-trivial ideals of a ring $R$. Consider the homomorphism $f: R \rightarrow(R / I) \times(R / J)$ defined by $f(x)=(x+I, x+J)$.
a) Prove that Ker $f=I \cap J$.
b) Prove that $f$ is surjective $\Leftrightarrow I+J=R$.
c) Prove that a ring $R$ is a direct product of two rings $\Leftrightarrow R$ contains idempotent elements. [For an an idempotent element $e$ take $I=(e)$ and $J=(1-e)$ ]
d) A ring $R$ is called boolean if $\forall a \in R \quad a^{2}=a$. Prove that a finite boolean ring is isomorphic to $\mathbb{Z}_{2} \times \ldots \times \mathbb{Z}_{2}$.
$\diamond$ 7.4 Prove that finite integral domain is a field.
$\diamond 7.5$ a)Prove that if $x$ is nilpotent then $1-x$ is invertible.
b) Prove that nil-radical is contained in all the maximal ideals.
c) Intersection of all maximal ideals is called the Jacobson radical. Prove that the Jacobson radical consists of all elements $x$ such that $1-x y$ is invertible $\forall y \in R$.
d) Prove that nil-radical is contained in the Jacobson radical. Give an example when they do not coincide.

Def 7.1 An ideal $I$ of a ring $R$ is called prime if $\forall a, b \in R a b \in I$ implies that $a \in I$ or $b \in I$.
$\diamond 7.6$ a) Prove that an ideal $I$ of a ring $R$ is prime $\Leftrightarrow R / I$ is an integral domain.
b) Prove that an ideal $I$ of a ring $R$ is maximal $\Leftrightarrow R / I$ is a field.
c) Prove that any maximal ideal is prime.
d) Prove that nil-radical is contained in each prime ideal.
$e^{*}$ ) Prove that nil-radical is the intersection of all prime ideals.
f) Give an example of a non-prime ideal.
g) Give an example of a prime ideal which is not maximal.
h) Prove that $R$ is integral domain $\Leftrightarrow\{0\}$ is prime ideal.
$\diamond$ 7.7 Prove that:
a) $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$;
b) $\mathbb{R}[x] /(x-a) \cong \mathbb{R}(a \in \mathbb{R})$;
c) $\mathbb{C}[x] /(x-a) \cong \mathbb{C}(a \in \mathbb{C})$;
d) $\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C} ; \quad$ e) $\mathbb{R}[x] /\left(x^{2}-1\right) \cong \mathbb{R} \times \mathbb{R} ; \quad$ f) $\mathbb{C}[x] /\left(x^{2}-1\right) \cong \mathbb{C} \times \mathbb{C}$;
g) $\mathbb{C}[x] /\left(x^{2}+1\right) \cong \mathbb{C} \times \mathbb{C} ; \quad$ h) $\mathbb{Z}[x] /(x-a) \cong \mathbb{Z}(a \in \mathbb{Z}) ; \quad$ i) $\mathbb{Z}[x] /(2) \cong \mathbb{Z}_{2}[x] ;$
j) $\mathbb{Z}[x] /(2, x) \cong \mathbb{Z}_{2}$ (recall that $(2, x)$ is the ideal generated by 2 and $\left.x\right)$;
$\diamond 7.8$ a) Prove that $\mathbb{Z}[x] /(2 x) \cong A$ where $A$ is the subring of $\mathbb{Z}_{2}[x] \times \mathbb{Z}$ defined by $A=\{(P(x), m), \quad m \equiv P(0)(\bmod 2)\}$;
b) Prove that $A$ has no nilpotent or idempotent elements; prove that all the maximal ideals of $A$ are principal ideals generated by the elements $(P(x), 1),(1, p)$ and $(x, 2)$, where $P(x) \neq x$ is an irreducible polynomial in $\mathbb{Z}_{2}[x]$ and $p \in \mathbb{Z}$ is an odd prime.

Def 7.2 Let $R$ be an integral domain. An element $a \in R, a \neq 0, a \notin R^{*}$ is called irreducible if $a=b c$ implies $b \in R^{*}$ or $c \in R^{*}$.
$\diamond 7.9$ a) Prove that if the ideal $(a)$ is prime then $a$ is irreducible.
b) Prove that in a principle domain the following three statements are equivalent:
(1) $a$ is irreducible;
(2) the ideal $(a)$ is prime;
(3) the ideal $(a)$ is maximal.
c) Give an example of an integral domain $R$ and of an irreducible element $a \in R$ such that the the ideal (a) is prime but not maximal.
d) Let $R=\{a+b i \sqrt{3}, \quad a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Prove that 2 is irreducible in $R$ but (2) is not prime.

Def 7.3 Integral domain $R$ is called factorial if any non-invertible element $a \in R$ may be represented as $a=p_{1} \ldots p_{l}$ where $p_{1}, \ldots, p_{l}$ are some irreducible elements and this representation is unique up to an invertible factor. (This means that for any other such decomposition
$a=q_{1} \ldots q_{s} \quad l=s$ and after appropriate renumbering $\left(p_{i}\right)=\left(q_{i}\right)$.)
$\diamond 7.10$ a) Prove that every principal domain is factorial.
b) Prove that in a factorial domain $a$ is irreducible $\Leftrightarrow$ the ideal $(a)$ is prime. Therefore irreducible elements in factorial domains may be also called primes.
c) Give an example of an integral domain which is not factorial.
d) Give an example of a factorial domain which is not a principal domain.
$\mathrm{e}^{*}$ ) Prove that if $R$ is factorial then the polynomial ring $R[x]$ is also factorial.
$\diamond 7.11$ a) Prove that $\mathbb{Z}[i]=\{a+b i, \quad a, b \in \mathbb{Z}\} \subset \mathbb{C}$ is a principal ring.
b) Which of the numbers $2,3,5,7,11,13$ are irreducible in $\mathbb{Z}[i]$ ?
c) Describe irreducible elements in $\mathbb{Z}[i]$.
$\diamond 7.12$ a) Let $R$ be an integral domain. Consider the relation $\sim$ on $R \times(R \backslash\{0\})$ defined by $(a, b) \sim(c, d) \Leftrightarrow$ $a d=b c$. Prove that $\sim$ is an equivalence relation. The equivalence class of a pair $(a, b)$ will be denoted by $\frac{a}{b}$ and called fraction. The set of all fractions will be denoted by $K$. Define the operations " + " and ". " on $K$ by $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$ and $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$.
b) Prove that the operations " + " and "." on $K$ are defined correctly and $K$ is a field under these operations. This field is called the field of fractions of the integral domain $R$. Prove that $K$ contains the subring $\left\{\frac{a}{1}, \quad a \in\right.$ $R\}$ which is isomorphic to $R$.
c) Prove that if an integral domain $R$ is a subring of a field $L$ then the minimal subfield $K \subset L$, such that $R \subset K \subset L$ is isomorphic to the field of fractions of $R$.

