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8 Algebras.
In this only section we deal with associative rings with unity, not necessarily commutative. Let
k be a �eld. An associative ring A with unity is called a k-algebra (or algebra over k) if there is
de�ned a multiplication k×A→ A such that A becomes a vector space over k (under the ring
addition and the above multiplication) and ∀a; b ∈ A ∀� ∈ k � · (a · b) = (� · a) · b = a · (� · b).

¦ 8.1 a) Let A be a k-algebra. Prove that {� · 1; � ∈ k} is a subring of A isomorphic to k.
(Use that ∀a ∈ A ∀� ∈ k (� · 1) · a = a · (� · 1).)
b) Let A be an associative ring with unity having a �eld k as a subring. Suppose additionally
that ∀a ∈ A ∀� ∈ k � · a = a · �. Prove that then A is a k-algebra.

¦ 8.2 a) Prove that the set of all n× n matrices gl(n; k) is a k-algebra.
b) Prove that the polynomial ring k[x] is a commutative k-algebra.
c) Prove that the formal power series ring k[[x]] is a commutative k-algebra.

¦ 8.3 Let A be a k-algebra, a ∈ A. Prove that the set {�0 + �1a+ �2a2 + : : :+ �nan; �i ∈
k; n ∈ N} is the minimal subalgebra of A containing a. It is denoted by k[a]. Prove that k[a]
is a commutative k-algebra.

¦ 8.4 Let A be a k-algebra, a ∈ A, k[x] be the polynomial algebra. De�ne the mapping
'a : k[x] → A, 'a(�0 + �1x+ �2x2 + : : :+ �nxn) = �0 + �1a+ �2a2 + : : :+ �nan.
a) Prove that 'a is a homomorphism and Im'a = k[a]. Prove that either Ker'a = {0} or
Ker'a = (Pa(x)), where Pa(x) is a non-zero polynomial in k[x].
b) If Ker'a = {0} then the element a is called transcendental over k. Prove that for a
transcendental element a k[a] ∼= k[x].
c) If Ker'a = (Pa(x)), Pa(x) 6= 0, then a is called algebraic over k and Pa(x) is called
the minimal polynomial of the element a. (Since Pa(x) is de�ned up to a scalar factor we
assume the leading coe�cient of P (x) to be 1.) Prove that for an algebraic element a ∈ A
k[a] ∼= k[x]=(Pa(x)).

¦ 8.5 Let A be a k-algebra, a ∈ A. De�ne the mapping La : A → A by La(b) = ab. Prove
that La is a linear operator. Prove that the mapping A → gl(A) de�ned by a 7→ La is an
injective homomorphism.

¦ 8.6 Let A be a �nite-dimensional k-algebra.
a) Prove that ∀a ∈ A is algebraic over k and the minimal polynomial Pa(x) is the divisor of
the characteristic polynomial of the linear operator La.
b) Give an example of a k-algebra A and a ∈ A such that these two polynomials do not
coincide.

¦ 8.7 Prove that the polynomials x2− 2 and x3− 2 are irreducible over Q. This implies that
Q[
√

2] = {a + b
√

2; a; b ∈ Q} and Q[ 3√2] = {a + b 3√2 + c 3√4; a; b; c ∈ Q} are �elds. Give
an explicit formula for the inverse element in these �elds. Find the minimal polynomials for
the elements 1 +

√
2 and 1 + 3√2.
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9 Fields.
In this section we discuss extensions of �elds k ⊂ K. This means that a �eld k is a sub�eld
of a �eld K. The extension k ⊂ K is called �nite if K is �nite-dimensional vector space over
k. This dimension is called the degree of the extension and denoted by [K : k].

¦ 9.1 Prove that if P (x) ∈ k[x] is an irreducible polynomial and k[�] = k[x]=(P (x)) then the
extension k ⊂ k[�] is �nite and [k[�] : k] = degP (x). Therefore [C : R] = 2, [Q[

√
2] : Q] = 2

and [Q[ 3√2] : Q] = 3.

¦ 9.2 Let k ⊂ K ⊂ L be some �elds. Prove that the extension k ⊂ L is �nite if and only if
both extensions k ⊂ K and K ⊂ L are �nite. Prove that in this case [L : k] = [L : K][K : k].

¦ 9.3 Prove that C has no sub�elds containing R; Q[
√

2] and Q[ 3√2] have no sub�elds except
Q.

¦ 9.4 Prove that L = {a + b
√

2 + ci + di
√

2; a; b; c; d ∈ Q} is a �eld; �nd [L : Q]. Find at
least three di�erent �elds K such that Q ⊂ K ⊂ L; �nd [K : Q] and [L : K] for each such K.
Are these sub�elds isomorphic to each other? Find the minimal polynomial for � = i +

√
2

over Q. Prove that L = Q[�].

¦ 9.5 Describe the minimal sub�eld K of C containing all the three roots of the equation
x3 = 1. Find the degree [K : Q].

¦ 9.6 Let K = Q[ 3√2] (see (8.7)). Note that the polynomial x3 − 2 is not irreducible over K
since x3 − 2 = (x− 3√2)(x2 + 3√2x+ 3√4). Prove that the second factor is irreducible over K.
Let L = K[�] where � is a root of x2 + 3√2x + 3√4. Find the degrees [K : Q] and [L : K].
Find at least three di�erent sub�elds M ⊂ L, M 6= Q, M 6= K. Find [M : Q] and [L : M ] for
each such M . (Hint: one of these sub�elds is described in the previous item.) Which of these
sub�elds are isomorphic to K?

¦ 9.7 Prove that the extensions k ⊂ k(x) and k ⊂ k((x)) are not �nite. Is the extension
k(x) ⊂ k((x)) �nite?

¦ 9.8 Prove that the extension Q ⊂ R is not �nite.

¦ 9.9 The extension k ⊂ K is called algebraic if ∀a ∈ K is an algebraic element over k. Prove
that any �nite extension is algebraic. Give an example of an algebraic extension which is not
�nite.

¦ 9.10 Recall the Besout theorem: if a polynomial P (x) ∈ k[x] has a root � ∈ k (i.e.
P (�) = 0) then P (x) is divisible by x − � (i.e. P (x) = (x − �)Q(x) for some Q(x) ∈ k).
Deduce from the Besout theorem that a degree n polynomial P (x) ∈ k[x] has at most n roots
in k. If P (x) = �(x− �1)(x− �2) : : : (x− �n) we say that P (x) splits.

¦ 9.11 Let k ⊂ K be an extension of �elds, P (x) ∈ k[x] and P (x) = �(x−�1)(x−�2) : : : (x−
�n) for some �1 : : : �n ∈ K. Then the minimal sub�eld L ⊂ K containing �1 : : : �n is called
the splitting �eld for P (x) ∈ k[x].
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¦ 9.12 Prove that the �eld Q[−1
2 + i

√
3

2 ] is the splitting �eld for x3 − 1.

¦ 9.13 Prove that the �eld L from 9.6 is the splitting �eld for x3 − 2.

¦ 9.14 Prove that the �eld L from 9.4 is the splitting �eld for x4 − 2x2 + 9.

¦ 9.15 Prove that the �eld L from 9.4 is the splitting �eld for x4 − x2 − 2.

¦ 9.16 Prove that each polynomial P (x) ∈ k[x] has a splitting �eld. (Hint: for each irre-
ducible factor of P (x) generalize the construction used in 9.6.) Prove that this splitting �eld
is unique. (This means that if there are two splitting �elds k ⊂ K and k ⊂ L for P (x) then
there exists an isomorphism ' : K → L identical on k.)

¦ 9.17 Prove that a �nite subgroup of a multiplicative group of a �eld is cyclic. (Hint: the
polynomial xn − 1 has at most n roots; prove that any �nite abelian non-cyclic group G
contains more than n order n elements for some n | |G|.)

¦ 9.18 Let K be a �nite �eld, charK = p. (Note that this implies that Fp ⊂ K.) a) Prove
that ∀a; b ∈ K (a+ b)p = ap + bp.
b) Prove that ∀a ∈ Fp ap = a.
c) Prove that the mapping � : K → K de�ned by �(a) = ap is a homomorphism (and
therefore an isomorphism from K to Im � ⊂ K). � is called the Frobenius mapping.
d) Prove that �(a) = a ⇔ a ∈ Fp.
e)Prove that {a ∈ K; apn = a} is a sub�eld of K containing at most pn elements. (Hint:
apn = �n(a).)

¦ 9.19 Consider the splitting �eld for xpn − x over Fp. According to 9.16 it exists and is
unique up to an isomorphism. Denote this �eld by Fpn . According to 9.18e) Fpn has at most
pn elements. Prove that Fpn has exactly pn elements. (Hint: prove that the polynomial xpn−x
has no multiple roots since its derivative is −1.)

¦ 9.20 Let K be a �nite �eld, charK = p.
a) Prove that |K| = pn for some n. (Hint: note that K is n-dimensional Fp-algebra.)
b) Prove that K is the splitting �eld for xpn−1− 1. (Hint: use the Lagrange theorem for K∗.)
Therefore K ∼= Fpn .
c) Prove that

xpn − x =
∏

�∈Fpn
(x− �) and xpn−1 − 1 =

∏

0 6=�∈Fpn
(x− �):

¦ 9.21 Prove the Wilson theorem: if p is prime then (p− 1)! ≡ −1 (mod p).

¦ 9.22 Prove that the Frobenius mapping (see 9.18c)) � : Fpn → Fpn is an isomorphism.

¦ 9.23 Let P (x) be a degree n irreducible polynomial in Fp[x]. Let Fp[�] = Fp[x]=(P (x)) be
the �eld obtained from Fp by adjoining a root � of the irreducible polynomial P (x). Prove
that Fp[�] ∼= Fpn . Prove that P (x) has exactly n roots in Fp[�] and that those roots are:
�;�(�);�2(�); : : : ;�n−1(�). (� is the Frobenius mapping, see 9.18c).)
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¦ 9.24 Give an example of (an in�nite) characteristic p �eld K such that the Frobenius
mapping is not surjective.

¦ 9.25 Prove that Fpm ⊂ Fpn ⇔ m | n. Hint:

(1) "⇒": Fpn is a r-dimensional vector space over Fpm , therefore |Fpn | = |Fpm|r

(2) "⇐": Prove that if m | n then xpm−1− 1 | xpn−1− 1, therefore the equation xpm −x = 0
has exactly pm roots in Fpn .

¦ 9.26 Prove that Fpm = {a ∈ Fprm ; �m(a) = a} ⊂ Fprm

¦ 9.27 Let a ∈ Fpn be a generator of the cyclic group F∗pn . Prove that Fpn = Fp[a] and
therefore the minimal polynomial of a is an irreducible degree n polynomial in Fp[x]. Thus
∀n > 1 irreducible degree n polynomials in Fp[x] exist.

¦ 9.28 Let a ∈ Fpn , let Pa(x) be the minimal polynomial of a. Prove that Pa(x) | xpn − x
and degPa(x) | n.

¦ 9.29 Let P (x) be a degree n irreducible polynomial in Fp[x]. Prove that P (x) | xpn − x.

¦ 9.30 Prove that
xpn − x =

∏

All irreducible
polynomials
P (x) ∈ Fp[x];

degP (x) | n

P (x)

and
(xpn − x)

/
(LCMm|n(xpm − x)) =

∏

All irreducible
polynomials
P (x) ∈ Fp[x];
degP (x) = n

P (x)

¦ 9.31 Use 9.30 to list all irreducible polynomials of degree 2, 3 and 4 over F2 and of degree
2 and 3 over F3.

¦ 9.32 Prove that P (x) = x4 + x + 1 is irreducible over F2. Let � be a root of P (x) in
F16. Find the order of � as an element of F∗16. Find the other three roots of P (x). List all
the four elements of F4 ⊂ F16. Find the four elements of order 5 in F∗16 and their minimal
polynomial. (Hint: all the elements of F16 may be expressed explicitly as a+ b�+ c�2 + d�3

where a; b; c; d ∈ F2. F16 is four-dimensional vector space over F2 with the basis 1; �; �2; �3;
the Frobenius mapping is a linear operator whose matrix can be easily written. Then use 9.23
and 9.26 .)


