## 8 Algebras.

In this only section we deal with associative rings with unity, not necessarily commutative. Let $k$ be a field. An associative ring $A$ with unity is called a $k$-algebra (or algebra over $k$ ) if there is defined a multiplication $k \times A \rightarrow A$ such that $A$ becomes a vector space over $k$ (under the ring addition and the above multiplication) and $\forall a, b \in A \forall \lambda \in k \lambda \cdot(a \cdot b)=(\lambda \cdot a) \cdot b=a \cdot(\lambda \cdot b)$.
$\diamond 8.1$ a) Let $A$ be a $k$-algebra. Prove that $\{\lambda \cdot 1, \lambda \in k\}$ is a subring of $A$ isomorphic to $k$. (Use that $\forall a \in A \forall \lambda \in k(\lambda \cdot 1) \cdot a=a \cdot(\lambda \cdot 1)$.)
b) Let $A$ be an associative ring with unity having a field $k$ as a subring. Suppose additionally that $\forall a \in A \forall \lambda \in k \quad \lambda \cdot a=a \cdot \lambda$. Prove that then $A$ is a $k$-algebra.
$\diamond 8.2$ a) Prove that the set of all $n \times n$ matrices $\mathrm{gl}(n, k)$ is a $k$-algebra.
b) Prove that the polynomial ring $k[x]$ is a commutative $k$-algebra.
c) Prove that the formal power series ring $k[[x]]$ is a commutative $k$-algebra.
$\diamond 8.3$ Let $A$ be a $k$-algebra, $a \in A$. Prove that the set $\left\{\alpha_{0}+\alpha_{1} a+\alpha_{2} a^{2}+\ldots+\alpha_{n} a^{n}, \quad \alpha_{i} \in\right.$ $k, n \in \mathbb{N}\}$ is the minimal subalgebra of $A$ containing $a$. It is denoted by $k[a]$. Prove that $k[a]$ is a commutative $k$-algebra.
$\diamond 8.4$ Let $A$ be a $k$-algebra, $a \in A, k[x]$ be the polynomial algebra. Define the mapping $\varphi_{a}: k[x] \rightarrow A, \varphi_{a}\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\ldots+\alpha_{n} x^{n}\right)=\alpha_{0}+\alpha_{1} a+\alpha_{2} a^{2}+\ldots+\alpha_{n} a^{n}$.
a) Prove that $\varphi_{a}$ is a homomorphism and $\operatorname{Im} \varphi_{a}=k[a]$. Prove that either $\operatorname{Ker} \varphi_{a}=\{0\}$ or $\operatorname{Ker} \varphi_{a}=\left(P_{a}(x)\right)$, where $P_{a}(x)$ is a non-zero polynomial in $k[x]$.
b) If $\operatorname{Ker} \varphi_{a}=\{0\}$ then the element $a$ is called transcendental over $k$. Prove that for a transcendental element $a \quad k[a] \cong k[x]$.
c) If $\operatorname{Ker} \varphi_{a}=\left(P_{a}(x)\right), P_{a}(x) \neq 0$, then $a$ is called algebraic over $k$ and $P_{a}(x)$ is called the minimal polynomial of the element $a$. (Since $P_{a}(x)$ is defined up to a scalar factor we assume the leading coefficient of $P(x)$ to be 1.) Prove that for an algebraic element $a \in A$ $k[a] \cong k[x] /\left(P_{a}(x)\right)$.
$\diamond 8.5$ Let $A$ be a $k$-algebra, $a \in A$. Define the mapping $L_{a}: A \rightarrow A$ by $L_{a}(b)=a b$. Prove that $L_{a}$ is a linear operator. Prove that the mapping $A \rightarrow \operatorname{gl}(A)$ defined by $a \mapsto L_{a}$ is an injective homomorphism.
$\diamond 8.6$ Let $A$ be a finite-dimensional $k$-algebra.
a) Prove that $\forall a \in A$ is algebraic over $k$ and the minimal polynomial $P_{a}(x)$ is the divisor of the characteristic polynomial of the linear operator $L_{a}$.
b) Give an example of a $k$-algebra $A$ and $a \in A$ such that these two polynomials do not coincide.
$\diamond$ 8.7 Prove that the polynomials $x^{2}-2$ and $x^{3}-2$ are irreducible over $\mathbb{Q}$. This implies that $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}, \quad a, b \in \mathbb{Q}\}$ and $\mathbb{Q}[\sqrt[3]{2}]=\{a+b \sqrt[3]{2}+c \sqrt[3]{4}, \quad a, b, c \in \mathbb{Q}\}$ are fields. Give an explicit formula for the inverse element in these fields. Find the minimal polynomials for the elements $1+\sqrt{2}$ and $1+\sqrt[3]{2}$.

## 9 Fields.

In this section we discuss extensions of fields $k \subset K$. This means that a field $k$ is a subfield of a field $K$. The extension $k \subset K$ is called finite if $K$ is finite-dimensional vector space over $k$. This dimension is called the degree of the extension and denoted by $[K: k]$.
$\diamond$ 9.1 Prove that if $P(x) \in k[x]$ is an irreducible polynomial and $k[\alpha]=k[x] /(P(x))$ then the extension $k \subset k[\alpha]$ is finite and $[k[\alpha]: k]=\operatorname{deg} P(x)$. Therefore $[\mathbb{C}: \mathbb{R}]=2,[\mathbb{Q}[\sqrt{2}]: \mathbb{Q}]=2$ and $[\mathbb{Q}[\sqrt[3]{2}]: \mathbb{Q}]=3$.
$\diamond 9.2$ Let $k \subset K \subset L$ be some fields. Prove that the extension $k \subset L$ is finite if and only if both extensions $k \subset K$ and $K \subset L$ are finite. Prove that in this case $[L: k]=[L: K][K: k]$.
$\diamond \mathbf{9 . 3}$ Prove that $\mathbb{C}$ has no subfields containing $\mathbb{R} ; \mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt[3]{2}]$ have no subfields except $\mathbb{Q}$.
$\diamond 9.4$ Prove that $L=\{a+b \sqrt{2}+c i+d i \sqrt{2}, \quad a, b, c, d \in \mathbb{Q}\}$ is a field; find $[L: \mathbb{Q}]$. Find at least three different fields $K$ such that $\mathbb{Q} \subset K \subset L$; find $[K: \mathbb{Q}]$ and $[L: K]$ for each such $K$. Are these subfields isomorphic to each other? Find the minimal polynomial for $\alpha=i+\sqrt{2}$ over $\mathbb{Q}$. Prove that $L=\mathbb{Q}[\alpha]$.
$\diamond$ 9.5 Describe the minimal subfield $K$ of $\mathbb{C}$ containing all the three roots of the equation $x^{3}=1$. Find the degree $[K: \mathbb{Q}]$.
$\diamond$ 9.6 Let $K=\mathbb{Q}[\sqrt[3]{2}]$ (see (8.7)). Note that the polynomial $x^{3}-2$ is not irreducible over $K$ since $x^{3}-2=(x-\sqrt[3]{2})\left(x^{2}+\sqrt[3]{2} x+\sqrt[3]{4}\right)$. Prove that the second factor is irreducible over $K$. Let $L=K[\alpha]$ where $\alpha$ is a root of $x^{2}+\sqrt[3]{2} x+\sqrt[3]{4}$. Find the degrees $[K: \mathbb{Q}]$ and $[L: K]$. Find at least three different subfields $M \subset L, M \neq \mathbb{Q}, M \neq K$. Find $[M: \mathbb{Q}]$ and $[L: M]$ for each such $M$. (Hint: one of these subfields is described in the previous item.) Which of these subfields are isomorphic to $K$ ?
$\diamond 9.7$ Prove that the extensions $k \subset k(x)$ and $k \subset k((x))$ are not finite. Is the extension $k(x) \subset k((x))$ finite?
$\diamond 9.8$ Prove that the extension $\mathbb{Q} \subset \mathbb{R}$ is not finite.
$\diamond 9.9$ The extension $k \subset K$ is called algebraic if $\forall a \in K$ is an algebraic element over $k$. Prove that any finite extension is algebraic. Give an example of an algebraic extension which is not finite.
$\diamond 9.10$ Recall the Besout theorem: if a polynomial $P(x) \in k[x]$ has a root $\alpha \in k$ (i.e. $P(\alpha)=0$ ) then $P(x)$ is divisible by $x-\alpha$ (i.e. $P(x)=(x-\alpha) Q(x)$ for some $Q(x) \in k)$. Deduce from the Besout theorem that a degree $n$ polynomial $P(x) \in k[x]$ has at most $n$ roots in $k$. If $P(x)=\lambda\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{n}\right)$ we say that $P(x)$ splits.
$\diamond 9.11$ Let $k \subset K$ be an extension of fields, $P(x) \in k[x]$ and $P(x)=\lambda\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots(x-$ $\alpha_{n}$ ) for some $\alpha_{1} \ldots \alpha_{n} \in K$. Then the minimal subfield $L \subset K$ containing $\alpha_{1} \ldots \alpha_{n}$ is called the splitting field for $P(x) \in k[x]$.
$\diamond$ 9.12 Prove that the field $\mathbb{Q}\left[-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right]$ is the splitting field for $x^{3}-1$.
$\diamond 9.13$ Prove that the field $L$ from 9.6 is the splitting field for $x^{3}-2$.
$\diamond 9.14$ Prove that the field $L$ from 9.4 is the splitting field for $x^{4}-2 x^{2}+9$.
$\diamond$ 9.15 Prove that the field $L$ from 9.4 is the splitting field for $x^{4}-x^{2}-2$.
$\diamond$ 9.16 Prove that each polynomial $P(x) \in k[x]$ has a splitting field. (Hint: for each irreducible factor of $P(x)$ generalize the construction used in 9.6.) Prove that this splitting field is unique. (This means that if there are two splitting fields $k \subset K$ and $k \subset L$ for $P(x)$ then there exists an isomorphism $\varphi: K \rightarrow L$ identical on $k$.)
$\diamond$ 9.17 Prove that a finite subgroup of a multiplicative group of a field is cyclic. (Hint: the polynomial $x^{n}-1$ has at most $n$ roots; prove that any finite abelian non-cyclic group $G$ contains more than $n$ order $n$ elements for some $n||G|$.)
$\diamond 9.18$ Let $K$ be a finite field, char $K=p$. (Note that this implies that $\mathbb{F}_{p} \subset K$.) a) Prove that $\forall a, b \in K(a+b)^{p}=a^{p}+b^{p}$.
b) Prove that $\forall a \in \mathbb{F}_{p} a^{p}=a$.
c) Prove that the mapping $\Phi: K \rightarrow K$ defined by $\Phi(a)=a^{p}$ is a homomorphism (and therefore an isomorphism from $K$ to $\operatorname{Im} \Phi \subset K)$. $\Phi$ is called the Frobenius mapping.
d) Prove that $\Phi(a)=a \Leftrightarrow a \in \mathbb{F}_{p}$.
e)Prove that $\left\{a \in K, \quad a^{p^{n}}=a\right\}$ is a subfield of $K$ containing at most $p^{n}$ elements. (Hint: $a^{p^{n}}=\Phi^{n}(a)$.)
$\diamond 9.19$ Consider the splitting field for $x^{p^{n}}-x$ over $\mathbb{F}_{p}$. According to 9.16 it exists and is unique up to an isomorphism. Denote this field by $\mathbb{F}_{p^{n}}$. According to 9.18 e ) $\mathbb{F}_{p^{n}}$ has at most $p^{n}$ elements. Prove that $\mathbb{F}_{p^{n}}$ has exactly $p^{n}$ elements. (Hint: prove that the polynomial $x^{p^{n}}-x$ has no multiple roots since its derivative is -1 .)
9.20 Let $K$ be a finite field, char $K=p$.
a) Prove that $|K|=p^{n}$ for some $n$. (Hint: note that $K$ is $n$-dimensional $\mathbb{F}_{p}$-algebra.)
b) Prove that $K$ is the splitting field for $x^{p^{n}-1}-1$. (Hint: use the Lagrange theorem for $K^{*}$.) Therefore $K \cong \mathbb{F}_{p^{n}}$.
c) Prove that

$$
x^{p^{n}}-x=\prod_{\alpha \in \mathbb{F}_{p^{n}}}(x-\alpha) \quad \text { and } \quad x^{p^{n}-1}-1=\prod_{0 \neq \alpha \in \mathbb{F}_{p^{n}}}(x-\alpha) .
$$

$\diamond$ 9.21 Prove the Wilson theorem: if $p$ is prime then $(p-1)!\equiv-1(\bmod p)$.
$\diamond$ 9.22 Prove that the Frobenius mapping (see 9.18c)) $\Phi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ is an isomorphism.
$\diamond$ 9.23 Let $P(x)$ be a degree $n$ irreducible polynomial in $\mathbb{F}_{p}[x]$. Let $\mathbb{F}_{p}[\alpha]=\mathbb{F}_{p}[x] /(P(x))$ be the field obtained from $\mathbb{F}_{p}$ by adjoining a root $\alpha$ of the irreducible polynomial $P(x)$. Prove that $\mathbb{F}_{p}[\alpha] \cong \mathbb{F}_{p^{n}}$. Prove that $P(x)$ has exactly $n$ roots in $\mathbb{F}_{p}[\alpha]$ and that those roots are: $\alpha, \Phi(\alpha), \Phi^{2}(\alpha), \ldots, \Phi^{n-1}(\alpha) .(\Phi$ is the Frobenius mapping, see 9.18c).)
$\diamond 9.24$ Give an example of (an infinite) characteristic $p$ field $K$ such that the Frobenius mapping is not surjective.
$\diamond$ 9.25 Prove that $\mathbb{F}_{p^{m}} \subset \mathbb{F}_{p^{n}} \Leftrightarrow m \mid n$. Hint:
$(1) " \Rightarrow ": \mathbb{F}_{p^{n}}$ is a $r$-dimensional vector space over $\mathbb{F}_{p^{m}}$, therefore $\left|\mathbb{F}_{p^{n}}\right|=\left|\mathbb{F}_{p^{m}}\right|^{r}$
(2)" $\Leftarrow "$ : Prove that if $m \mid n$ then $x^{p^{m}-1}-1 \mid x^{p^{n}-1}-1$, therefore the equation $x^{p^{m}}-x=0$ has exactly $p^{m}$ roots in $\mathbb{F}_{p^{n}}$.
$\diamond 9.26$ Prove that $\mathbb{F}_{p^{m}}=\left\{a \in \mathbb{F}_{p^{r m}}, \quad \Phi^{m}(a)=a\right\} \subset \mathbb{F}_{p^{r m}}$
$\diamond$ 9.27 Let $a \in \mathbb{F}_{p^{n}}$ be a generator of the cyclic group $\mathbb{F}_{p^{n}}^{*}$. Prove that $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[a]$ and therefore the minimal polynomial of $a$ is an irreducible degree $n$ polynomial in $\mathbb{F}_{p}[x]$. Thus $\forall n>1$ irreducible degree $n$ polynomials in $\mathbb{F}_{p}[x]$ exist.
$\diamond 9.28$ Let $a \in \mathbb{F}_{p^{n}}$, let $P_{a}(x)$ be the minimal polynomial of $a$. Prove that $P_{a}(x) \mid x^{p^{n}}-x$ and $\operatorname{deg} P_{a}(x) \mid n$.
$\diamond$ 9.29 Let $P(x)$ be a degree $n$ irreducible polynomial in $\mathbb{F}_{p}[x]$. Prove that $P(x) \mid x^{p^{n}}-x$.
$\diamond 9.30$ Prove that

$$
x^{p^{n}}-x=\prod_{\substack{\text { All irreducible } \\ \text { polynomials }}} P(x)
$$

and

$$
\left(x^{p^{n}}-x\right) /\left(\operatorname{LCM}_{m \mid n}\left(x^{p^{m}}-x\right)\right)=\prod_{\substack{\text { All irreducible } \\ \text { polynomials } \\ \\ \\ \\ \\ \\ \operatorname{deg} P(x) \in \mathbb{F}_{p}[x]\\} P(x)=n} \quad \prod^{2}
$$

$\diamond \mathbf{9 . 3 1}$ Use 9.30 to list all irreducible polynomials of degree 2,3 and 4 over $\mathbb{F}_{2}$ and of degree 2 and 3 over $\mathbb{F}_{3}$.
$\diamond 9.32$ Prove that $P(x)=x^{4}+x+1$ is irreducible over $\mathbb{F}_{2}$. Let $\alpha$ be a root of $P(x)$ in $\mathbb{F}_{16}$. Find the order of $\alpha$ as an element of $\mathbb{F}_{16}^{*}$. Find the other three roots of $P(x)$. List all the four elements of $\mathbb{F}_{4} \subset \mathbb{F}_{16}$. Find the four elements of order 5 in $\mathbb{F}_{16}^{*}$ and their minimal polynomial. (Hint: all the elements of $\mathbb{F}_{16}$ may be expressed explicitly as $a+b \alpha+c \alpha^{2}+d \alpha^{3}$ where $a, b, c, d \in \mathbb{F}_{2} . \mathbb{F}_{16}$ is four-dimensional vector space over $\mathbb{F}_{2}$ with the basis $1, \alpha, \alpha^{2}, \alpha^{3}$; the Frobenius mapping is a linear operator whose matrix can be easily written. Then use 9.23 and 9.26 .)

