8 Algebras.

In this only section we deal with associative rings with unity, not necessarily commutative. Let
k be a field. An associative ring A with unity is called a k-algebra (or algebra over k) if there is

defined a multiplication k£ x A — A such that A becomes a vector space over k (under the ring
addition and the above multiplication) and Va,b € AVA €k A-(a-b)=(A-a)-b=a-(A-D).

o 8.1 a) Let A be a k-algebra. Prove that {\-1, ) € k} is a subring of A isomorphic to k.
(Use that Vae AVA ek (A-1)-a=a-(A-1).)

b) Let A be an associative ring with unity having a field k£ as a subring. Suppose additionally
that Va € AVA € k X-a=a-A. Prove that then A is a k-algebra.

© 8.2 a) Prove that the set of all n x n matrices gl(n, k) is a k-algebra.
b) Prove that the polynomial ring k[z] is a commutative k-algebra.
¢) Prove that the formal power series ring k[[z]] is a commutative k-algebra.

¢ 8.3 Let A be a k-algebra, a € A. Prove that the set {ag + aja + aza® + ... + apa”, o; €
k,n € N} is the minimal subalgebra of A containing a. It is denoted by k[a]. Prove that k[a]
is a commutative k-algebra.

© 8.4 Let A be a k-algebra, a € A, k[z] be the polynomial algebra. Define the mapping
Vo k[x] = A, @oap + a1 + asx? + ... + @, 2") = ap + aga + aea® + ...+ aga.

a) Prove that ¢, is a homomorphism and Im ¢, = k[a]. Prove that either Ker ¢, = {0} or
Ker ¢, = (P,(z)), where P,(x) is a non-zero polynomial in k[z].

b) If Kery, = {0} then the element a is called transcendental over k. Prove that for a
transcendental element a  k[a] = k[z].

c) If Kerp, = (Py(x)), Pa(z) # 0, then a is called algebraic over k and P,(z) is called
the minimal polynomial of the element a. (Since P,(z) is defined up to a scalar factor we
assume the leading coefficient of P(z) to be 1.) Prove that for an algebraic element a € A

kla] = k[z]/(Fa(z)).

© 8.5 Let A be a k-algebra, a € A. Define the mapping L,: A — A by L,(b) = ab. Prove
that L, is a linear operator. Prove that the mapping A — gl(A) defined by a — L, is an
injective homomorphism.

© 8.6 Let A be a finite-dimensional k-algebra.

a) Prove that Va € A is algebraic over k and the minimal polynomial P,(z) is the divisor of
the characteristic polynomial of the linear operator L,.

b) Give an example of a k-algebra A and a € A such that these two polynomials do not
coincide.

¢ 8.7 Prove that the polynomials 22 — 2 and 2® — 2 are irreducible over Q. This implies that
QV2] = {a+bv2, a,b€Q}and Q2] = {a+0bV2+cV4, a,bcecQ} are fields. Give

an explicit formula for the inverse element in these fields. Find the minimal polynomials for
the elements 1 4+ v/2 and 1 + /2.



9 Fields.

In this section we discuss extensions of fields k C K. This means that a field £ is a subfield
of a field K. The extension k C K is called finite if K is finite-dimensional vector space over
k. This dimension is called the degree of the extension and denoted by [K : k].

© 9.1 Prove that if P(x) € k[z] is an irreducible polynomial and k[«] = k[z]/(P(x)) then the
extension k C k[a] is finite and [k[a] : k] = deg P(z). Therefore [C : R] = 2, [Q[v2] : Q] =
and [Q[v/2] : Q] = 3.

© 9.2 Let £k C K C L be some fields. Prove that the extension & C L is finite if and only if
both extensions k¥ C K and K C L are finite. Prove that in this case [L : k] = [L : K|[K : k].

© 9.3 Prove that C has no subfields containing R; Q[v/2] and Q[+/2] have no subfields except
Q.

© 9.4 Prove that L = {a + bv/2 + ¢i + div/2, a,b,c,d € Q} is a field; find [L : Q]. Find at
least three different fields K such that Q C K C L; find [K : Q] and [L : K] for each such K.
Are these subfields isomorphic to each other? Find the minimal polynomial for o = i + v/2
over Q. Prove that L = Qla].

© 9.5 Describe the minimal subfield K of C containing all the three roots of the equation
z* = 1. Find the degree [K : Q).

© 9.6 Let K = Q[¥/2] (see (8.7)). Note that the polynomial 2° — 2 is not irreducible over K
since 2% — 2 = (z — ¥/2) (2% + /22 + V/4). Prove that the second factor is irreducible over K.
Let L = K|a] where a is a root of 22 + /22 + v/4. Find the degrees [K : Q] and [L : K].
Find at least three different subfields M C L, M # Q, M # K. Find [M : Q] and [L : M] for
each such M. (Hint: one of these subfields is described in the previous item.) Which of these
subfields are isomorphic to K7

© 9.7 Prove that the extensions & C k(z) and k& C k((x)) are not finite. Is the extension
k(z) C k((z)) finite?

¢ 9.8 Prove that the extension Q C R is not finite.

¢ 9.9 The extension k C K is called algebraic if Va € K is an algebraic element over k. Prove
that any finite extension is algebraic. Give an example of an algebraic extension which is not
finite.

© 9.10 Recall the Besout theorem: if a polynomial P(z) € k[x] has a root o € k (i.e.
P(a) = 0) then P(z) is divisible by z — « (i.e. P(z) = (x — a)Q(x) for some Q(z) € k).
Deduce from the Besout theorem that a degree n polynomial P(z) € k[z] has at most n roots
ink. If P(z) =AMz —aq)(x — ag)...(x — a,) we say that P(x) splits.

© 9.11 Let k C K be an extension of fields, P(x) € k[z] and P(z) = Mz —ay)(z—az) ... (z—
ay) for some a; ..., € K. Then the minimal subfield L C K containing «; ... «, is called
the splitting field for P(z) € k|[x].



© 9.12 Prove that the field Q[—1 + 2*/75] is the splitting field for 2% — 1.

© 9.13 Prove that the field L from 9.6 is the splitting field for 23 — 2.

¢ 9.14 Prove that the field L from 9.4 is the splitting field for 2% — 222 + 9.
¢ 9.15 Prove that the field L from 9.4 is the splitting field for z* — 22 — 2.

© 9.16 Prove that each polynomial P(z) € k[z] has a splitting field. (Hint: for each irre-
ducible factor of P(x) generalize the construction used in 9.6.) Prove that this splitting field
is unique. (This means that if there are two splitting fields ¥ C K and k£ C L for P(x) then
there exists an isomorphism ¢ : K’ — L identical on k.)

© 9.17 Prove that a finite subgroup of a multiplicative group of a field is cyclic. (Hint: the
polynomial 2™ — 1 has at most n roots; prove that any finite abelian non-cyclic group G
contains more than n order n elements for some n | |G|.)

¢ 9.18 Let K be a finite field, char K = p. (Note that this implies that F, C K.) a) Prove
that Va,b € K (a +b)? = a? + b7,

b) Prove that Va € F,, a” = a.

¢) Prove that the mapping ® : K — K defined by ®(a) = a? is a homomorphism (and
therefore an isomorphism from K to Im® C K). ® is called the Frobenius mapping.

d) Prove that ®(a) = a < a € F,.

e)Prove that {a € K, a?" = a} is a subfield of K containing at most p" elements. (Hint:
a?’ = d"(a).)

© 9.19 Consider the splitting field for z¥" — z over F,. According to 9.16 it exists and is
unique up to an isomorphism. Denote this field by F». According to 9.18e) F,» has at most
p" elements. Prove that F,» has exactly p" elements. (Hint: prove that the polynomial 2" —z
has no multiple roots since its derivative is —1.)

© 9.20 Let K be a finite field, char K = p.

a) Prove that |K| = p” for some n. (Hint: note that K is n-dimensional F,-algebra.)

b) Prove that K is the splitting field for 7" ~' — 1. (Hint: use the Lagrange theorem for K*.)
Therefore K = [Fn.

c¢) Prove that

" — = H(m—a) and 2" —1= H (x — a).
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© 9.21 Prove the Wilson theorem: if p is prime then (p — 1)! = —1 (mod p).
¢ 9.22 Prove that the Frobenius mapping (see 9.18¢)) ® : F,n — F,» is an isomorphism.

¢ 9.23 Let P(x) be a degree n irreducible polynomial in F,[z]. Let F,[a] = F,[z]/(P(x)) be
the field obtained from F, by adjoining a root a of the irreducible polynomial P(z). Prove

that F,Ja] = Fyn. Prove that P(z) has exactly n roots in F,[a] and that those roots are:
o, ®(a), P*(a),..., " (). (P is the Frobenius mapping, see 9.18¢).)



© 9.24 Give an example of (an infinite) characteristic p field K such that the Frobenius
mapping is not surjective.

¢ 9.25 Prove that Fym C Fyn < m | n. Hint:
(1) 7=": F,» is a r-dimensional vector space over F,m, therefore |Fyn| = [Fym|"

(2) 7<=": Prove that if m | n then 27" 71 —1 | 27" 7! — 1, therefore the equation z?" —z =0
has exactly p™ roots in Fpn.

¢ 9.26 Prove that Fym = {a € Fyrm, ®™(a) =a} C Fym

© 9.27 Let a € Fy be a generator of the cyclic group F.. Prove that Fyn = Fy[a] and
therefore the minimal polynomial of a is an irreducible degree n polynomial in F,[z]. Thus
Vn > 1 irreducible degree n polynomials in F,[x] exist.

© 9.28 Let a € Fyu, let P,(z) be the minimal polynomial of a. Prove that P,(x) | z*" — z
and deg P,(x) | n.

© 9.29 Let P(z) be a degree n irreducible polynomial in F,[z]. Prove that P(z) | 2" — z.

¢ 9.30 Prove that
L H P(x)
All irreducible
polynomials
P(x) € Fylz],
deg P(x) | n

and
@ =) [CCM @ —) =[] P@)
All irreducible
polynomials
P(x) € Fyla],
deg P(z) =n

¢ 9.31 Use 9.30 to list all irreducible polynomials of degree 2, 3 and 4 over I, and of degree
2 and 3 over Fs.

© 9.32 Prove that P(x) = 2* + 2 + 1 is irreducible over Fy. Let o be a root of P(x) in
Fi6. Find the order of « as an element of Fj;. Find the other three roots of P(z). List all
the four elements of F; C 6. Find the four elements of order 5 in Fj; and their minimal
polynomial. (Hint: all the elements of F1s may be expressed explicitly as a + ba + ca? + da?
where a,b,c,d € Fy. Fi4 is four-dimensional vector space over [y with the basis 1, o, o, o
the Frobenius mapping is a linear operator whose matrix can be easily written. Then use 9.23

and 9.26 .)



