8 Algebras.

In this only section we deal with associative rings with unity, not necessarily commutative. Let k be a field. An associative ring A with unity is called a k-algebra (or algebra over k) if there is defined a multiplication $k \times A \to A$ such that A becomes a vector space over k (under the ring addition and the above multiplication) and $\forall a, b \in A \ \forall \lambda \in k \ \lambda \cdot (a \cdot b) = (\lambda \cdot a) \cdot b = a \cdot (\lambda \cdot b)$.

◊ 8.1 a) Let A be a k-algebra. Prove that $\{\lambda \cdot 1, \lambda \in k\}$ is a subring of A isomorphic to k. (Use that $\forall a \in A \ \forall \lambda \in k \ (\lambda \cdot 1) \cdot a = a \cdot (\lambda \cdot 1)$.)

b) Let A be an associative ring with unity having a field k as a subring. Suppose additionally that $\forall a \in A \ \forall \lambda \in k \ \lambda \cdot a = a \cdot \lambda$. Prove that then A is a k-algebra.

 \diamond 8.2 a) Prove that the set of all $n \times n$ matrices gl(n, k) is a k-algebra.

b) Prove that the polynomial ring k[x] is a commutative k-algebra.

c) Prove that the formal power series ring k[[x]] is a commutative k-algebra.

◊ 8.3 Let A be a k-algebra, $a \in A$. Prove that the set $\{\alpha_0 + \alpha_1 a + \alpha_2 a^2 + \ldots + \alpha_n a^n, \alpha_i \in k, n \in \mathbb{N}\}$ is the minimal subalgebra of A containing a. It is denoted by k[a]. Prove that k[a] is a commutative k-algebra.

♦ 8.4 Let A be a k-algebra, $a \in A$, k[x] be the polynomial algebra. Define the mapping $\varphi_a: k[x] \to A$, $\varphi_a(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \ldots + \alpha_n x^n) = \alpha_0 + \alpha_1 a + \alpha_2 a^2 + \ldots + \alpha_n a^n$.

a) Prove that φ_a is a homomorphism and $\operatorname{Im} \varphi_a = k[a]$. Prove that either $\operatorname{Ker} \varphi_a = \{0\}$ or $\operatorname{Ker} \varphi_a = (P_a(x))$, where $P_a(x)$ is a non-zero polynomial in k[x].

b) If Ker $\varphi_a = \{0\}$ then the element *a* is called *transcendental* over *k*. Prove that for a transcendental element *a* $k[a] \cong k[x]$.

c) If Ker $\varphi_a = (P_a(x))$, $P_a(x) \neq 0$, then *a* is called *algebraic* over *k* and $P_a(x)$ is called the *minimal polynomial* of the element *a*. (Since $P_a(x)$ is defined up to a scalar factor we assume the leading coefficient of P(x) to be 1.) Prove that for an algebraic element $a \in A$ $k[a] \cong k[x]/(P_a(x))$.

♦ 8.5 Let A be a k-algebra, $a \in A$. Define the mapping $L_a: A \to A$ by $L_a(b) = ab$. Prove that L_a is a linear operator. Prove that the mapping $A \to gl(A)$ defined by $a \mapsto L_a$ is an injective homomorphism.

 \diamond 8.6 Let A be a finite-dimensional k-algebra.

a) Prove that $\forall a \in A$ is algebraic over k and the minimal polynomial $P_a(x)$ is the divisor of the characteristic polynomial of the linear operator L_a .

b) Give an example of a k-algebra A and $a \in A$ such that these two polynomials do not coincide.

 \diamond 8.7 Prove that the polynomials $x^2 - 2$ and $x^3 - 2$ are irreducible over \mathbb{Q} . This implies that $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}, a, b \in \mathbb{Q}\}$ and $\mathbb{Q}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{4}, a, b, c \in \mathbb{Q}\}$ are fields. Give an explicit formula for the inverse element in these fields. Find the minimal polynomials for the elements $1 + \sqrt{2}$ and $1 + \sqrt[3]{2}$.

9 Fields.

In this section we discuss *extensions of fields* $k \subset K$. This means that a field k is a subfield of a field K. The extension $k \subset K$ is called *finite* if K is finite-dimensional vector space over k. This dimension is called the *degree* of the extension and denoted by [K:k].

◊ 9.1 Prove that if $P(x) \in k[x]$ is an irreducible polynomial and $k[\alpha] = k[x]/(P(x))$ then the extension $k \subset k[\alpha]$ is finite and $[k[\alpha] : k] = \deg P(x)$. Therefore $[\mathbb{C} : \mathbb{R}] = 2$, $[\mathbb{Q}[\sqrt{2}] : \mathbb{Q}] = 2$ and $[\mathbb{Q}[\sqrt[3]{2}] : \mathbb{Q}] = 3$.

♦ 9.2 Let $k \subset K \subset L$ be some fields. Prove that the extension $k \subset L$ is finite if and only if both extensions $k \subset K$ and $K \subset L$ are finite. Prove that in this case [L:k] = [L:K][K:k].

♦ 9.3 Prove that \mathbb{C} has no subfields containing \mathbb{R} ; $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt[3]{2}]$ have no subfields except \mathbb{Q} .

 \diamond 9.4 Prove that $L = \{a + b\sqrt{2} + ci + di\sqrt{2}, a, b, c, d \in \mathbb{Q}\}$ is a field; find $[L : \mathbb{Q}]$. Find at least three different fields K such that $\mathbb{Q} \subset K \subset L$; find $[K : \mathbb{Q}]$ and [L : K] for each such K. Are these subfields isomorphic to each other? Find the minimal polynomial for $\alpha = i + \sqrt{2}$ over \mathbb{Q} . Prove that $L = \mathbb{Q}[\alpha]$.

♦ 9.5 Describe the minimal subfield K of C containing all the three roots of the equation $x^3 = 1$. Find the degree $[K : \mathbb{Q}]$.

 \diamond 9.6 Let $K = \mathbb{Q}[\sqrt[3]{2}]$ (see (8.7)). Note that the polynomial $x^3 - 2$ is not irreducible over K since $x^3 - 2 = (x - \sqrt[3]{2})(x^2 + \sqrt[3]{2}x + \sqrt[3]{4})$. Prove that the second factor is irreducible over K. Let $L = K[\alpha]$ where α is a root of $x^2 + \sqrt[3]{2}x + \sqrt[3]{4}$. Find the degrees $[K : \mathbb{Q}]$ and [L : K]. Find at least three different subfields $M \subset L$, $M \neq \mathbb{Q}$, $M \neq K$. Find $[M : \mathbb{Q}]$ and [L : M] for each such M. (Hint: one of these subfields is described in the previous item.) Which of these subfields are isomorphic to K?

♦ 9.7 Prove that the extensions $k \subset k(x)$ and $k \subset k((x))$ are not finite. Is the extension $k(x) \subset k((x))$ finite?

 \diamond **9.8** Prove that the extension $\mathbb{Q} \subset \mathbb{R}$ is not finite.

♦ 9.9 The extension $k \subset K$ is called *algebraic* if $\forall a \in K$ is an algebraic element over k. Prove that any finite extension is algebraic. Give an example of an algebraic extension which is not finite.

♦ 9.10 Recall the Besout theorem: if a polynomial $P(x) \in k[x]$ has a root $\alpha \in k$ (i.e. $P(\alpha) = 0$) then P(x) is divisible by $x - \alpha$ (i.e. $P(x) = (x - \alpha)Q(x)$ for some $Q(x) \in k$). Deduce from the Besout theorem that a degree *n* polynomial $P(x) \in k[x]$ has at most *n* roots in *k*. If $P(x) = \lambda(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$ we say that P(x) splits.

♦ 9.11 Let $k \subset K$ be an extension of fields, $P(x) \in k[x]$ and $P(x) = \lambda(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$ for some $\alpha_1 \dots \alpha_n \in K$. Then the minimal subfield $L \subset K$ containing $\alpha_1 \dots \alpha_n$ is called the *splitting field* for $P(x) \in k[x]$.

♦ 9.12 Prove that the field $\mathbb{Q}[-\frac{1}{2}+i\frac{\sqrt{3}}{2}]$ is the splitting field for x^3-1 .

♦ 9.13 Prove that the field L from 9.6 is the splitting field for $x^3 - 2$.

 \diamond **9.14** Prove that the field *L* from 9.4 is the splitting field for $x^4 - 2x^2 + 9$.

♦ 9.15 Prove that the field L from 9.4 is the splitting field for $x^4 - x^2 - 2$.

♦ 9.16 Prove that each polynomial $P(x) \in k[x]$ has a splitting field. (Hint: for each irreducible factor of P(x) generalize the construction used in 9.6.) Prove that this splitting field is unique. (This means that if there are two splitting fields $k \subset K$ and $k \subset L$ for P(x) then there exists an isomorphism $\varphi : K \to L$ identical on k.)

♦ 9.17 Prove that a finite subgroup of a multiplicative group of a field is cyclic. (Hint: the polynomial $x^n - 1$ has at most *n* roots; prove that any finite abelian non-cyclic group *G* contains more than *n* order *n* elements for some $n \mid |G|$.)

♦ 9.18 Let K be a finite field, char K = p. (Note that this implies that $\mathbb{F}_p \subset K$.) a) Prove that $\forall a, b \in K$ $(a + b)^p = a^p + b^p$.

b) Prove that $\forall a \in \mathbb{F}_p \ a^p = a$.

c) Prove that the mapping $\Phi : K \to K$ defined by $\Phi(a) = a^p$ is a homomorphism (and therefore an isomorphism from K to $\operatorname{Im} \Phi \subset K$). Φ is called the *Frobenius mapping*. d) Prove that $\Phi(a) = a \Leftrightarrow a \in \mathbb{F}_p$. e)Prove that $\{a \in K, a^{p^n} = a\}$ is a subfield of K containing at most p^n elements. (Hint:

e)Prove that $\{a \in K, a^p = a\}$ is a subfield of K containing at most p^n elements. (Hint: $a^{p^n} = \Phi^n(a)$.)

 \diamond **9.19** Consider the splitting field for $x^{p^n} - x$ over \mathbb{F}_p . According to 9.16 it exists and is unique up to an isomorphism. Denote this field by \mathbb{F}_{p^n} . According to 9.18e) \mathbb{F}_{p^n} has at most p^n elements. Prove that \mathbb{F}_{p^n} has exactly p^n elements. (Hint: prove that the polynomial $x^{p^n} - x$ has no multiple roots since its derivative is -1.)

 \diamond **9.20** Let *K* be a finite field, char *K* = *p*.

a) Prove that $|K| = p^n$ for some n. (Hint: note that K is n-dimensional \mathbb{F}_p -algebra.)

b) Prove that K is the splitting field for $x^{p^n-1}-1$. (Hint: use the Lagrange theorem for K^* .) Therefore $K \cong \mathbb{F}_{p^n}$.

c) Prove that

$$x^{p^n} - x = \prod_{\alpha \in \mathbb{F}_{p^n}} (x - \alpha)$$
 and $x^{p^n - 1} - 1 = \prod_{0 \neq \alpha \in \mathbb{F}_{p^n}} (x - \alpha)$

♦ 9.21 Prove the Wilson theorem: if p is prime then $(p-1)! \equiv -1 \pmod{p}$.

♦ 9.22 Prove that the Frobenius mapping (see 9.18c)) $\Phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is an isomorphism.

◊ 9.23 Let P(x) be a degree *n* irreducible polynomial in $\mathbb{F}_p[x]$. Let $\mathbb{F}_p[\alpha] = \mathbb{F}_p[x]/(P(x))$ be the field obtained from \mathbb{F}_p by adjoining a root α of the irreducible polynomial P(x). Prove that $\mathbb{F}_p[\alpha] \cong \mathbb{F}_{p^n}$. Prove that P(x) has exactly *n* roots in $\mathbb{F}_p[\alpha]$ and that those roots are: $\alpha, \Phi(\alpha), \Phi^2(\alpha), \ldots, \Phi^{n-1}(\alpha)$. (Φ is the Frobenius mapping, see 9.18c).) \diamond **9.24** Give an example of (an infinite) characteristic *p* field *K* such that the Frobenius mapping is not surjective.

- \diamond **9.25** Prove that $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n} \Leftrightarrow m \mid n$. Hint:
 - (1) " \Rightarrow ": \mathbb{F}_{p^n} is a r-dimensional vector space over \mathbb{F}_{p^m} , therefore $|\mathbb{F}_{p^n}| = |\mathbb{F}_{p^m}|^r$
 - (2) " \Leftarrow ": Prove that if $m \mid n$ then $x^{p^m-1}-1 \mid x^{p^n-1}-1$, therefore the equation $x^{p^m}-x=0$ has exactly p^m roots in \mathbb{F}_{p^n} .
- ♦ 9.26 Prove that $\mathbb{F}_{p^m} = \{a \in \mathbb{F}_{p^{rm}}, \quad \Phi^m(a) = a\} \subset \mathbb{F}_{p^{rm}}$

♦ 9.27 Let $a \in \mathbb{F}_{p^n}$ be a generator of the cyclic group $\mathbb{F}_{p^n}^*$. Prove that $\mathbb{F}_{p^n} = \mathbb{F}_p[a]$ and therefore the minimal polynomial of a is an irreducible degree n polynomial in $\mathbb{F}_p[x]$. Thus $\forall n > 1$ irreducible degree n polynomials in $\mathbb{F}_p[x]$ exist.

◊ 9.28 Let $a \in \mathbb{F}_{p^n}$, let $P_a(x)$ be the minimal polynomial of a. Prove that $P_a(x) | x^{p^n} - x$ and deg $P_a(x) | n$.

♦ 9.29 Let P(x) be a degree *n* irreducible polynomial in $\mathbb{F}_p[x]$. Prove that $P(x) \mid x^{p^n} - x$.

 $\diamond~9.30$ Prove that

$$x^{p^{n}} - x = \prod_{\substack{\text{All irreducible} \\ \text{polynomials} \\ P(x) \in \mathbb{F}_{p}[x], \\ \deg P(x) \mid n}} P(x)$$

and

$$(x^{p^{n}} - x) / (LCM_{m|n}(x^{p^{m}} - x)) = \prod_{\substack{\text{All irreducible} \\ \text{polynomials} \\ P(x) \in \mathbb{F}_{p}[x], \\ \deg P(x) = n}} P(x)$$

♦ 9.31 Use 9.30 to list all irreducible polynomials of degree 2, 3 and 4 over \mathbb{F}_2 and of degree 2 and 3 over \mathbb{F}_3 .

 \diamond 9.32 Prove that $P(x) = x^4 + x + 1$ is irreducible over \mathbb{F}_2 . Let α be a root of P(x) in \mathbb{F}_{16} . Find the order of α as an element of \mathbb{F}_{16}^* . Find the other three roots of P(x). List all the four elements of $\mathbb{F}_4 \subset \mathbb{F}_{16}$. Find the four elements of order 5 in \mathbb{F}_{16}^* and their minimal polynomial. (Hint: all the elements of \mathbb{F}_{16} may be expressed explicitly as $a + b\alpha + c\alpha^2 + d\alpha^3$ where $a, b, c, d \in \mathbb{F}_2$. \mathbb{F}_{16} is four-dimensional vector space over \mathbb{F}_2 with the basis $1, \alpha, \alpha^2, \alpha^3$; the Frobenius mapping is a linear operator whose matrix can be easily written. Then use 9.23 and 9.26 .)