6 Rings.

In this section "ring" means commutative associative ring with unity.

♦ 6.1 Prove that in any ring a0 = 0 and -ab = (-a)b.

Def 6.1 Let R be a ring.

An element $a \in R$ is called *invertible* if $\exists a^{-1} \in R$. The group $R^* = \{a \in R, a \text{ is invertible}\}$ is called *the multiplicative group of* R.

An element $a \in R$, $a \neq 0$ is called zero divisor if $\exists b \in R$, $b \neq 0$ such that ab = 0.

A ring R is called an *integral domain* if it has no zero divisors.

An element $a \in R$, is called *nilpotent* if $\exists n \in \mathbb{N}$ such that $a^n = 0$.

An element $a \in R$, $a \neq 0, 1$ is called *idempotent* if $a^2 = a$.

 \diamond 6.2 a) Prove that if a is idempotent then 1 - a is idempotent too.

b) Prove that idempotent is a zero divisor.

♦ **6.3** For which $n \in \mathbb{N}$ the ring \mathbb{Z}_n contains a) zero divisors?

b) nilpotent elements ? c) idempotent elements? Suggest an algorithm for finding all idempotent elements in \mathbb{Z}_n for such values of n.

♦ 6.4 Let $A: V \to V$ be a linear operator on a vector space V over C. Suppose that A satisfy the equation a) $A^n = 0$. Find the eigenvalues of A.

b) $A^2 = A$. Find the eigenvalues of A. Prove that V has a basis consisting of the eigenvectors of A. Describe the action of A on V in geometric terms.

 \diamond 6.5 a) Prove that any ring has a minimal subring isomorphic to Z or Z_n which is generated by 1 ∈ R. b) Prove that if R is an integral domain then its minimal subring is isomorphic either to Z or to Z_p, where p is prime. In this case we say that the *characteristic* char R of the ring R is either 0 or p. c) Let R be an integral domain. Prove that if char R = p then $\forall a \in R, a \neq 0$, ord a = p and if char R = 0 then $\forall a \in R, a \neq 0$, ord $a = \infty$. (Here we mean the order of an element under addition.)

◊ **6.6** a) Prove that if *additive group* of a ring R is a cyclic group generated by 1 then $R \cong \mathbb{Z}_n$ or $R \cong \mathbb{Z}$. *b) Prove that if *additive group* of a ring R is a cyclic group then it is generated by 1.

 $\diamond~6.7~$ Find all rings with 4 elements.

 $\diamond~6.8$ Prove that any finite integral domain is a field.

Def 6.2 A mapping $f : R \to S$ is called *homomorphism* (of rings with unity) if $\forall x, y \in R$ (1) f(x+y) = f(x) + f(y), (2) $f(x \cdot y) = f(x) \cdot f(y)$ and (3) f(1) = 1. The set Ker $f = \{x \in R, f(x) = 0\} \subset R$ is called *kernel* of f. The set Im $f = \{y \in S, \exists x \in R \ y = f(x)\} \subset S$ is called *image* of f.

 \diamond 6.9 Prove that the third condition in definition 6.2 is necessary, i.e. find an example of a mapping f satisfying only first two conditions but not the third one.

 \diamond **6.10** a) Prove that Im f is a subring of S.

b) Note that the kernel of a homomorphism Ker f is not a subring of S, for $1 \notin \text{Ker } f$. Prove that Ker f is a subgroup of the additive group of the ring R and that $\forall x \in R \ \forall a \in \text{Ker } f \ ax \in \text{Ker } f$.

♦ 6.11 Consider two rings R and S. Define operations on $R \times S$ by (a, b) + (a', b') = (a + a', b + b') and $(a, b) \cdot (a', b') = (a \cdot a', b \cdot b')$.

a) Prove that $R \times S$ is a ring.

b) Prove that the mappings $p: R \times S \to R$ and $q: R \times S \to S$ defined by p(a,b) = a and q(a,b) = b are

homomorphisms. Find $\operatorname{Ker} p$ and $\operatorname{Ker} q$.

c) For which m and n $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$?

d) Let R and S have no nilpotent elements. Is it true that $R \times S$ has no nilpotent elements?

e) Let R and S have no idempotent elements. Is it true that $R \times S$ has no idempotent elements? f) Let R and S be integral domains. Is it true that $R \times S$ is an integral domain?

g) Is it true that $(R \times S)^* = R^* \times S^*$?

h) Prove that if (m, n) = 1 then $\varphi(mn) = \varphi(m)\varphi(n)$ (φ is the Euler function).

Def 6.3 A subset $I \subset R$ is called an *ideal* if I is a subgroup of R under addition and $\forall x \in R \ \forall a \in I \ xa \in I$. Note R and $\{0\}$ are ideals of R. Ideals different from R are called *nontrivial* ideals.

 \diamond **6.12** a) Find all the ideals of \mathbb{Z} and \mathbb{Z}_n .

b) Prove that the kernel of any non-zero homomorphism is a nontrivial ideal.

c) Prove that if an ideal I of a ring R contains an invertible element then I = R.

 \diamond 6.13 a) Let a_1, \ldots, a_n be some non-invertible elements of R. Prove that the set $I = \{x_1a_1 + \ldots + x_na_n, x_i \in R\}$ is an ideal in R. Prove that I is the minimal ideal, containing a_1, \ldots, a_n . In this case we say that I is generated by a_1, \ldots, a_n and denoted I by (a_1, \ldots, a_n) .

b) Prove that every non-invertible element is contained in some nontrivial ideal.

c) Prove that R is a field $\Leftrightarrow R$ has no nonzero nontrivial ideals.

d) Prove that any ideal of $R \times S$ equals to $I \times J$ where I and J are some ideals of R and S.

e) Let $f : R \to S$ be a surjective homomorphism. Prove that the ideals of S are in one-to-one correspondence with the ideals of R containing Ker f.

 \diamond 6.14 An ideal generated by one element $a \in R$ is called *principal* ideal and is denoted by (a). If all ideals of an integral ring are principal, the ring is called the *principal* ring.

a) R is a principal ring, $a, b \in R$, $a, b \neq 0$. Then $(a) \subset (b) \Leftrightarrow \exists c \in R$ such that a = bc.

b) R is a principal ring, $a, b \in R$, $a, b \neq 0$. Then $(a) = (b) \Leftrightarrow \exists c \text{ invertible (i.e } c \in R^*)$ such that a = bc.

c) Prove that the polynomial ring $\mathbb{K}[x] = \{a_0x^n + a_1x^{n-1} + \ldots + a_{n-1}x + a_n, a_i \in \mathbb{K}\}$ is a principal ring. (K is a field.)

d) Prove that the polynomial ring $\mathbb{K}[x, y]$ is not a principal ring.

e) Is $\mathbb{Z}[x]$ a principal ring?

 \diamond 6.15 a) Prove that the set N of all nilpotent elements of a ring R is an ideal of R. N is called the *nil-radical* of R.

b) Find nil-radical of \mathbb{Z}_n for $n = 2, 3, \ldots, 12$.

c) For which $n \mathbb{Z}_n$ has a non-trivial nil-radical?

 \diamond 6.16 a) Let *I* and *J* be two non-trivial ideals of a ring *R*. Prove that the sets *I* ∩ *J*, *I* · *J* = {*a*₁*b*₁ + ... + *a_mb_m*, *a_i* ∈ *I*, *b_i* ∈ *J*} and *I* + *J* = {*a* + *b*, *a* ∈ *I*, *b* ∈ *J*} are ideals in *R*.

b) Prove that $I \cap J \supset I \cdot J$; find an example when $I \cap J \neq I \cdot J$.

c) Let $I_1 \supset I_2 \supset \ldots \supset I_m \supset \ldots$ be a decreasing sequence of ideals of a ring R. Prove that $\bigcap_{m=1}^{\infty} I_m$ is an ideal. Find an example when $\bigcap_{m=1}^{\infty} I_m = \{0\}$ while all the I_m are nonzero.

d) Let $I_1 \subset I_2 \subset \ldots \subset I_m \subset \ldots$ be an increasing sequences of ideals of a ring R. Prove that $\bigcup_{m=1}^{\infty} I_m$ is an ideal. Prove that if all the I_m are nontrivial then $\bigcap_{m=1}^{\infty} I_m$ is nontrivial too.

e) A nontrivial ideal is called *maximal* if it is not contained in any other nontrivial ideal. Using Zorn lemma prove that maximal ideals exist and that every nontrivial ideal is a subset of a maximal ideal.

 $\diamond~6.17\,$ Find all the maximal ideals of

a) \mathbb{Z} ; b) $\mathbb{Z} \times \mathbb{Z}$; c) \mathbb{Z}_{24} ; d) $\mathbb{C}[x]$; e) $\mathbb{R}[x]$; f) $\mathbb{Z}[x]$. g) $\mathbb{Z}[\frac{1}{2}] = \{\frac{m}{2^n}, \quad m, n \in \mathbb{Z}, n \ge 0\}$; g) $\mathbb{Z}_{(2)} = \{\frac{m}{n}, \quad m, n \in \mathbb{Z}, (n, 2) = 1\}$.