6 Rings.

In this section "ring" means commutative associative ring with unity.
\diamond 6.1 Prove that in any ring $a 0=0$ and $-a b=(-a) b$.
Def 6.1 Let R be a ring.
An element $a \in R$ is called invertible if $\exists a^{-1} \in R$. The group $R^{*}=\{a \in R, \quad a$ is invertible $\}$ is called the multiplicative group of R.
An element $a \in R, a \neq 0$ is called zero divisor if $\exists b \in R, b \neq 0$ such that $a b=0$.
A ring R is called an integral domain if it has no zero divisors.
An element $a \in R$, is called nilpotent if $\exists n \in \mathbb{N}$ such that $a^{n}=0$.
An element $a \in R, a \neq 0,1$ is called idempotent if $a^{2}=a$.
$\diamond 6.2$ a) Prove that if a is idempotent then $1-a$ is idempotent too.
b) Prove that idempotent is a zero divisor.
\diamond 6.3 For which $n \in \mathbb{N}$ the ring \mathbb{Z}_{n} contains a) zero divisors?
b) nilpotent elements ? c) idempotent elements? Suggest an algorithm for finding all idempotent elements in \mathbb{Z}_{n} for such values of n.
\diamond 6.4 Let $A: V \rightarrow V$ be a linear operator on a vector space V over \mathbb{C}. Suppose that A satisfy the equation a) $A^{n}=0$. Find the eigenvalues of A.
b) $A^{2}=A$. Find the eigenvalues of A. Prove that V has a basis consisting of the eigenvectors of A. Describe the action of A on V in geometric terms.
$\diamond 6.5$ a) Prove that any ring has a minimal subring isomorphic to Z or Z_{n} which is generated by $1 \in R$.
b) Prove that if R is an integral domain then its minimal subring is isomorphic either to Z or to Z_{p}, where p is prime. In this case we say that the characteristic char R of the ring R is either 0 or p.
c) Let R be an integral domain. Prove that if char $R=p$ then $\forall a \in R, a \neq 0$, ord $a=p$ and if char $R=0$ then $\forall a \in R, a \neq 0$, ord $a=\infty$. (Here we mean the order of an element under addition.)
\diamond 6.6 a) Prove that if additive group of a ring R is a cyclic group generated by 1 then $R \cong \mathbb{Z}_{n}$ or $R \cong \mathbb{Z}$.
*b) Prove that if additive group of a ring R is a cyclic group then it is generated by 1 .
\diamond 6.7 Find all rings with 4 elements.
\diamond 6.8 Prove that any finite integral domain is a field.
Def 6.2 A mapping $f: R \rightarrow S$ is called homomorphism (of rings with unity) if $\forall x, y \in R$
(1) $f(x+y)=f(x)+f(y)$,
(2) $f(x \cdot y)=f(x) \cdot f(y)$ and
(3) $f(1)=1$.

The set Ker $f=\{x \in R, f(x)=0\} \subset R$ is called kernel of f.
The set $\operatorname{Im} f=\{y \in S, \exists x \in R y=f(x)\} \subset S$ is called image of f.
\diamond 6.9 Prove that the third condition in definition 6.2 is necessary, i.e. find an example of a mapping f satisfying only first two conditions but not the third one.
$\diamond 6.10$ a) Prove that $\operatorname{Im} f$ is a subring of S.
b) Note that the kernel of a homomorphism $\operatorname{Ker} f$ is not a subring of S, for $1 \notin \operatorname{Ker} f$. Prove that $\operatorname{Ker} f$ is a subgroup of the additive group of the ring R and that $\forall x \in R \forall a \in \operatorname{Ker} f a x \in \operatorname{Ker} f$.
\diamond 6.11 Consider two rings R and S. Define operations on $R \times S$ by $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ and $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot a^{\prime}, b \cdot b^{\prime}\right)$.
a) Prove that $R \times S$ is a ring.
b) Prove that the mappings $p: R \times S \rightarrow R$ and $q: R \times S \rightarrow S$ defined by $p(a, b)=a$ and $q(a, b)=b$ are
homomorphisms. Find $\operatorname{Ker} p$ and $\operatorname{Ker} q$.
c) For which m and $n \mathbb{Z}_{m} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}$?
d) Let R and S have no nilpotent elements. Is it true that $R \times S$ has no nilpotent elements?
e) Let R and S have no idempotent elements. Is it true that $R \times S$ has no idempotent elements? f) Let R and S be integral domains. Is it true that $R \times S$ is an integral domain?
g) Is it true that $(R \times S)^{*}=R^{*} \times S^{*}$?
h) Prove that if $(m, n)=1$ then $\varphi(m n)=\varphi(m) \varphi(n)$ (φ is the Euler function).

Def 6.3 A subset $I \subset R$ is called an ideal if I is a subgroup of R under addition and $\forall x \in R \quad \forall a \in I \quad x a \in I$. Note R and $\{0\}$ are ideals of R. Ideals different from R are called nontrivial ideals.
$\diamond 6.12$ a) Find all the ideals of \mathbb{Z} and \mathbb{Z}_{n}.
b) Prove that the kernel of any non-zero homomorphism is a nontrivial ideal.
c) Prove that if an ideal I of a ring R contains an invertible element then $I=R$.
$\diamond 6.13$ a) Let $a_{1}, \ldots a_{n}$ be some non-invertible elements of R. Prove that the set $I=\left\{x_{1} a_{1}+\ldots+x_{n} a_{n}, \quad x_{i} \in\right.$ $R\}$ is an ideal in R. Prove that I is the minimal ideal, containing $a_{1}, \ldots a_{n}$. In this case we say that I is generated by $a_{1}, \ldots a_{n}$ and denoted I by $\left(a_{1}, \ldots a_{n}\right)$.
b) Prove that every non-invertible element is contained in some nontrivial ideal.
c) Prove that R is a field $\Leftrightarrow R$ has no nonzero nontrivial ideals.
d) Prove that any ideal of $R \times S$ equals to $I \times J$ where I and J are some ideals of R and S.
e) Let $f: R \rightarrow S$ be a surjective homomorphism. Prove that the ideals of S are in one-to-one correspondence with the ideals of R containing $\operatorname{Ker} f$.
\diamond 6.14 An ideal generated by one element $a \in R$ is called principal ideal and is denoted by (a). If all ideals of an integral ring are principal, the ring is called the principal ring.
a) R is a principal ring, $a, b \in R, a, b \neq 0$. Then $(a) \subset(b) \Leftrightarrow \exists c \in R$ such that $a=b c$.
b) R is a principal ring, $a, b \in R, a, b \neq 0$. Then $(a)=(b) \Leftrightarrow \exists c$ invertible (i.e $c \in R^{*}$) such that $a=b c$.
c) Prove that the polynomial ring $\mathbb{K}[x]=\left\{a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}, a_{i} \in \mathbb{K}\right\}$ is a principal ring.
(\mathbb{K} is a field.)
d) Prove that the polynomial ring $\mathbb{K}[x, y]$ is not a principal ring.
e) Is $\mathbb{Z}[x]$ a principal ring?
$\diamond 6.15$ a) Prove that the set N of all nilpotent elements of a $\operatorname{ring} R$ is an ideal of $R . N$ is called the nil-radical of R.
b) Find nil-radical of \mathbb{Z}_{n} for $n=2,3, \ldots, 12$.
c) For which $n \mathbb{Z}_{n}$ has a non-trivial nil-radical?
$\diamond 6.16$ a) Let I and J be two non-trivial ideals of a ring R. Prove that the sets $I \cap J, I \cdot J=\left\{a_{1} b_{1}+\ldots+\right.$ $\left.a_{m} b_{m}, a_{i} \in I, b_{i} \in J\right\}$ and $I+J=\{a+b, a \in I, b \in J\}$ are ideals in R.
b) Prove that $I \cap J \supset I \cdot J$; find an example when $I \cap J \neq I \cdot J$.
c) Let $I_{1} \supset I_{2} \supset \ldots \supset I_{m} \supset \ldots$ be a decreasing sequence of ideals of a ring R. Prove that $\bigcap_{m=1}^{\infty} I_{m}$ is an ideal. Find an example when $\bigcap_{m=1}^{\infty} I_{m}=\{0\}$ while all the I_{m} are nonzero.
d) Let $I_{1} \subset I_{2} \subset \ldots \subset I_{m} \subset \ldots$ be an increasing sequences of ideals of a ring R. Prove that $\bigcup_{m=1}^{\infty} I_{m}$ is an ideal. Prove that if all the I_{m} are nontrivial then $\bigcap_{m=1}^{\infty} I_{m}$ is nontrivial too.
e) A nontrivial ideal is called maximal if it is not contained in any other nontrivial ideal. Using Zorn lemma prove that maximal ideals exist and that every nontrivial ideal is a subset of a maximal ideal.
\diamond 6.17 Find all the maximal ideals of
a) \mathbb{Z};
b) $\mathbb{Z} \times \mathbb{Z}$;
c) \mathbb{Z}_{24};
d) $\mathbb{C}[x]$;
e) $\mathbb{R}[x] ; \quad$ f) $\mathbb{Z}[x]$.
g) $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\frac{m}{2^{n}}, \quad m, n \in \mathbb{Z}, n \geq 0\right\} ;$
g) $\mathbb{Z}_{(2)}=\left\{\frac{m}{n}, \quad m, n \in \mathbb{Z},(n, 2)=1\right\}$.

