4. Normal subgroups and quotient groups.

Def 4.1 Let $H \triangleleft G$, define operation on G/H by $aH \cdot bH = abH$. The set G/H with this operation is called *quotient group*.

 \diamond **4.1** a) Prove that definition 4.1 is correct, i.e. if $aH = a_1H$, $bH = b_1H$, then $aH \cdot bH = a_1H \cdot b_1H$. b) Prove that G/H is indeed a group under the operation defined in 4.1.

◇ 4.2 a) Prove that Z/nZ ≅ Z_n. (nZ is the subgroup of all integers divisible by n.)
b) Prove that Z_{mn} has exactly one subgroup isomorphic to Z_m: the subgroup nZ_{mn} = {nx, x ∈ Z_{mn}}. Prove that Z_{mn}/nZ_{mn} ≅ Z_n.

♦ **4.3** Let G and H be two groups. Prove that $\{e_G\} \times H$ is normal subgroup in $G \times H$ and $G \times H/(\{e_G\} \times H) \cong G$.

Def 4.2 Let $a = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} \in S_n$. An *inversion* is a pair of $k, l \in \{1, 2, \dots, n\}$ such that k < l but $i_k > i_l$. The permutation a is called *even* (odd) if it has even (odd) number of inversions.

♦ 4.4 Define the mapping $\sigma : S_n \to \{\pm 1\}$ by the formula $\sigma(a) = (-1)^{\text{(number of inversions of }a)}$.

Prove that σ is a homomorphism. Useful statements for the proof:

a) Prove that any permutation is a product of transpositions.

b) Let $a, t \in S_n$ and t is a transposition. Prove that if a is even then at and ta are odd and if a is odd then at and ta are even.

c) Prove that if $a = t_1 t_2 \dots t_r$ where all the t_i are transpositions then $\sigma(a) = (-1)^r$.

Def 4.3 The set A_n of all even permutations (= Ker σ from 4.4) is called the *alternating* group.

♦ **4.6** Prove that Int $G \cong G/Z(G)$.

 \diamond 4.7 Prove that G/Z(G) can not be a cyclic group.

 \diamond **4.8** Find all normal subgroups and the corresponding quotient groups of (a) Q_8 , (b) D_4 , (c) A_4 , (b) D_n .

 \diamond 4.9 Let $H \lhd G$, $H' \lhd G'$, $H \cong H'$ and $G/H \cong G'/H'$. Does this imply that $G \cong G'$?

◊ **4.10** Let $H \triangleleft G$, define a mapping $\varphi_H : G \rightarrow G/H$ by $\varphi_H(g) = gH$. Prove that φ is a surjective homomorphism; it is called the *canonical homomorphism*. Prove that Ker $\varphi_H = H$.

 \diamond **4.11** Let $f: G \to L$ be a homomorphism.

a) Prove that $G/\operatorname{Ker} f \cong \operatorname{Im} f$. (Note a useful corollary for finite groups: $|G| = |\operatorname{Ker} f| \cdot |\operatorname{Im} f|$) b) Denote $\operatorname{Ker} f = H$. Prove that the mapping $\overline{f} : G/H \to L$ defined by $\overline{f}(gH) = f(g)$ is defined correctly. Prove that \overline{f} is an injective homomorphism, $\operatorname{Im} f = \operatorname{Im} \overline{f}$ and the following diagram is commutative.

$$\begin{array}{ccc} G & \xrightarrow{f} & L \\ \downarrow^{\varphi_H} & \nearrow_{\bar{f}} \\ G/H \end{array}$$

♦ 4.12 a) Let $f : G \to L$ be a homomorphism, H is a subgroup in G and M is a subgroup in L. Prove that f(H) is a subgroup in L and $f^{-1}(M)$ is a subgroup in G. $(f^{-1}(Y))$ is the set of all such $x \in G$ that $f(x) \in Y$.) b) Prove that if M is normal then $f^{-1}(M)$ is normal.

c) Find an example when H is normal but f(H) is not normal.

d) Prove that if f is surjective and H is normal then f(H) is normal.

e) Let $K \triangleleft G$. Prove that there is one-to-one correspondence between normal subgroups of G containing K and normal subgroups of G/K.

♦ 4.13 Classify all groups of order 8.

 \diamond **4.14** Classify all groups of order 2*p*, where *p* is prime.

 \diamond 4.15 a) Let K and H be two normal subgroups in G such that $G \supset K \supset H$. Prove that $H \triangleleft K$ and $G/K \cong (G/H)/(K/H)$.

b) Let K and H be two subgroups in G such that $G \supset K \supset H$ and K is normal in G and H is normal in K. Is it true that H is normal in G?

 \diamond **4.16** Let *H* and *K* be subgroups in *G* and *K* \lhd *G*.

a) Prove that $KH = \{kh, k \in K, h \in H\} = \{hk, k \in K, h \in H\}$ is a subgroup of G.

b) Prove that $K \cap H \triangleleft H$.

c) Prove that $KH/K \cong H/(K \cap H)$.

d) Let $K \cap H = \{e\}$. Is it true that $KH \cong K \times H$?

Def 4.4 Let *H* and *K* be subgroups in *G*, *K* normal in *G*, $K \cap H = \{e\}$ and G = KH (this simply means that $\forall g \in G \ \exists h \in H, k \in K$ such that g = kh). Then we say that *G* is *semidirect product* of *K* and *H*.

 \diamond 4.17 Prove that under conditions of 4.4 $G/K \cong H$.

♦ 4.18 Prove that if G is semidirect product of K and H and both K and H are normal in G then $G \cong K \times H$.

 \diamond 4.19 Prove that D_n is semidirect product of C_n and $\{e, s\}$ where s is some reflection from D_n .

 \diamond 4.20 Prove that S_n is semidirect product of A_n and $\{e, t\}$ where s is a transposition.

 \diamond 4.21 Prove that S_4 is semidirect product of the four Klein group and S_3 .

 \diamond 4.22 Let $\mathbb{E}(2)$ be the group of all isometries of the Euclidean plane, $\mathbb{E}_0(2)$ — the subgroup of all the isometries that preserve the orientation, $\mathbb{T}(2)$ — the subgroup of all translations. Let us fix some circle and denote by D_{∞} the subgroup of all the isometries that preserve this circle.

a) Prove that $\mathbb{E}_0(2) \triangleleft \mathbb{E}(2)$ and $\mathbb{E}(2)$ is a semidirect product of \mathbb{E}_0 and $\{e, s\}$ where s is some reflection.

b) Prove that $\mathbb{T}(2) \triangleleft \mathbb{E}(2)$ and $\mathbb{E}(2)$ is a semidirect product of $\mathbb{T}(2)$ and D_{∞} (and therefore $\mathbb{E}(2)/\mathbb{T}(2) \cong D_{\infty}$). c) Prove that $\mathbb{E}_0(2)$ is a semidirect product of $\mathbb{T}(2)$ and S^1 , where S^1 is the group of all rotations preserving some fixed circle (and therefore $\mathbb{E}_0(2)/\mathbb{T}(2) \cong S^1$).

d) State and prove the same results for $\mathbb{E}(3)$ — the group of all isometries of the Euclidean 3-space.

 \diamond 4.23 Give an example of a group G and its normal subgroup K such that G is not a semidirect product of K and H for any subgroup H of G.

 \diamond 4.24 Let K be some field. GL(n, K) is the group of all nondegenerate n × n matrices. SL(n, K) = {A ∈ GL(n, K), det A = 1}, Λ = {λE, λ ∈ K*} (E is the unit matrix). a) Prove that SL(n, K) ⊲ GL(n, K). b) Prove that Λ = Z(SL(n, K)) = Z(GL(n, K)); Λ ∩ SL(n, K) = Z(SL(n, K)).

Def 4.5 Projective linear group is $PSL(n, \mathbb{K}) = SL(n, \mathbb{K})/(\Lambda \cap SL(n, \mathbb{K})).$

♦ **4.25** Prove that a) $PSL(2, \mathbb{Z}_2) \cong S_3$; b) $PSL(2, \mathbb{Z}_3) \cong A_4$; *c) $PSL(2, \mathbb{Z}_5) \cong A_5$.