4. Normal subgroups and quotient groups.

Def 4.1 Let $H \triangleleft G$, define operation on G / H by $a H \cdot b H=a b H$. The set G / H with this operation is called quotient group.
$\diamond 4.1$ a) Prove that definition 4.1 is correct, i.e. if $a H=a_{1} H, b H=b_{1} H$, then $a H \cdot b H=a_{1} H \cdot b_{1} H$. b) Prove that G / H is indeed a group under the operation defined in 4.1.
$\diamond 4.2$ a) Prove that $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$. ($n \mathbb{Z}$ is the subgroup of all integers divisible by n.)
b) Prove that $\mathbb{Z}_{m n}$ has exactly one subgroup isomorphic to \mathbb{Z}_{m} : the subgroup $n \mathbb{Z}_{m n}=\left\{\bar{n} x, \quad x \in \mathbb{Z}_{m n}\right\}$. Prove that $\mathbb{Z}_{m n} / n \mathbb{Z}_{m n} \cong \mathbb{Z}_{n}$.
$\diamond 4.3$ Let G and H be two groups. Prove that $\left\{e_{G}\right\} \times H$ is normal subgroup in $G \times H$ and $G \times H /\left(\left\{e_{G}\right\} \times H\right) \cong G$.

Def 4.2 Let $a=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ i_{1} & i_{2} & \ldots & i_{n}\end{array}\right) \in S_{n}$. An inversion is a pair of $k, l \in\{1,2, \ldots, n\}$ such that $k<l$ but $i_{k}>i_{l}$. The permutation a is called even (odd) if it has even (odd) number of inversions.
\diamond 4.4 Define the mapping $\sigma: S_{n} \rightarrow\{ \pm 1\}$ by the formula $\sigma(a)=(-1)$ (number of inversions of $\left.a\right)$. Prove that σ is a homomorphism. Useful statements for the proof:
a) Prove that any permutation is a product of transpositions.
b) Let $a, t \in S_{n}$ and t is a transposition. Prove that if a is even then at and $t a$ are odd and if a is odd then at and $t a$ are even.
c) Prove that if $a=t_{1} t_{2} \ldots t_{r}$ where all the t_{i} are transpositions then $\sigma(a)=(-1)^{r}$.

Def 4.3 The set A_{n} of all even permutations ($=\operatorname{Ker} \sigma$ from 4.4) is called the alternating group.
\diamond 4.5 Find $G / Z(G)$ (see problem 2.24) for
(a) $G=Q_{8}$,
(b) $G=D_{4}$,
(c) $G=A_{4}$,
(d) $G=D_{n}$,
(e) $G=A_{5}$.
\diamond 4.6 Prove that $\operatorname{Int} G \cong G / Z(G)$.
\diamond 4.7 Prove that $G / Z(G)$ can not be a cyclic group.
\diamond 4.8 Find all normal subgroups and the corresponding quotient groups of
(a) Q_{8},
(b) D_{4},
(c) A_{4},
(b) D_{n}.
$\diamond 4.9$ Let $H \triangleleft G, H^{\prime} \triangleleft G^{\prime}, H \cong H^{\prime}$ and $G / H \cong G^{\prime} / H^{\prime}$. Does this imply that $G \cong G^{\prime}$?
$\diamond 4.10$ Let $H \triangleleft G$, define a mapping $\varphi_{H}: G \rightarrow G / H$ by $\varphi_{H}(g)=g H$. Prove that φ is a surjective homomorphism; it is called the canonical homomorphism. Prove that $\operatorname{Ker} \varphi_{H}=H$.
$\diamond 4.11$ Let $f: G \rightarrow L$ be a homomorphism.
a) Prove that $G / \operatorname{Ker} f \cong \operatorname{Im} f$. (Note a useful corollary for finite groups: $|G|=|\operatorname{Ker} f| \cdot|\operatorname{Im} f|$)
b) Denote Ker $f=H$. Prove that the mapping $\bar{f}: G / H \rightarrow L$ defined by $\bar{f}(g H)=f(g)$ is defined correctly. Prove that \bar{f} is an injective homomorphism, $\operatorname{Im} f=\operatorname{Im} \bar{f}$ and the following diagram is commutative.

$\diamond 4.12$ a) Let $f: G \rightarrow L$ be a homomorphism, H is a subgroup in G and M is a subgroup in L. Prove that $f(H)$ is a subgroup in L and $f^{-1}(M)$ is a subgroup in $G .\left(f^{-1}(Y)\right.$ is the set of all such $x \in G$ that $f(x) \in Y$.)
b) Prove that if M is normal then $f^{-1}(M)$ is normal.
c) Find an example when H is normal but $f(H)$ is not normal.
d) Prove that if f is surjective and H is normal then $f(H)$ is normal.
e) Let $K \triangleleft G$. Prove that there is one-to-one correspondence between normal subgroups of G containing K and normal subgroups of G / K.
\diamond 4.13 Classify all groups of order 8 .
\diamond 4.14 Classify all groups of order $2 p$, where p is prime.
$\diamond 4.15$ a) Let K and H be two normal subgroups in G such that $G \supset K \supset H$. Prove that $H \triangleleft K$ and $G / K \cong(G / H) /(K / H)$.
b) Let K and H be two subgroups in G such that $G \supset K \supset H$ and K is normal in G and H is normal in K. Is it true that H is normal in G ?
$\diamond 4.16$ Let H and K be subgroups in G and $K \triangleleft G$.
a) Prove that $K H=\{k h, \quad k \in K, h \in H\}=\{h k, \quad k \in K, h \in H\}$ is a subgroup of G.
b) Prove that $K \cap H \triangleleft H$.
c) Prove that $K H / K \cong H /(K \cap H)$.
d) Let $K \cap H=\{e\}$. Is it true that $K H \cong K \times H$?

Def 4.4 Let H and K be subgroups in G, K normal in $G, K \cap H=\{e\}$ and $G=K H$ (this simply means that $\forall g \in G \quad \exists h \in H, k \in K$ such that $g=k h$). Then we say that G is semidirect product of K and H.
\diamond 4.17 Prove that under conditions of $4.4 G / K \cong H$.
\diamond 4.18 Prove that if G is semidirect product of K and H and both K and H are normal in G then $G \cong K \times H$.
\diamond 4.19 Prove that D_{n} is semidirect product of C_{n} and $\{e, s\}$ where s is some reflection from D_{n}.
$\diamond 4.20$ Prove that S_{n} is semidirect product of A_{n} and $\{e, t\}$ where s is a transposition.
$\diamond 4.21$ Prove that S_{4} is semidirect product of the four Klein group and S_{3}.
$\diamond 4.22$ Let $\mathbb{E}(2)$ be the group of all isometries of the Euclidean plane, $\mathbb{E}_{0}(2)$ - the subgroup of all the isometries that preserve the orientation, $\mathbb{T}(2)$ - the subgroup of all translations. Let us fix some circle and denote by D_{∞} the subgroup of all the isometries that preserve this circle.
a) Prove that $\mathbb{E}_{0}(2) \triangleleft \mathbb{E}(2)$ and $\mathbb{E}(2)$ is a semidirect product of \mathbb{E}_{0} and $\{e, s\}$ where s is some reflection.
b) Prove that $\mathbb{T}(2) \triangleleft \mathbb{E}(2)$ and $\mathbb{E}(2)$ is a semidirect product of $\mathbb{T}(2)$ and D_{∞} (and therefore $\left.\mathbb{E}(2) / \mathbb{T}(2) \cong D_{\infty}\right)$.
c) Prove that $\mathbb{E}_{0}(2)$ is a semidirect product of $\mathbb{T}(2)$ and S^{1}, where S^{1} is the group of all rotations preserving some fixed circle (and therefore $\mathbb{E}_{0}(2) / \mathbb{T}(2) \cong S^{1}$).
d) State and prove the same results for $\mathbb{E}(3)$ - the group of all isometries of the Euclidean 3 -space.
$\diamond 4.23$ Give an example of a group G and its normal subgroup K such that G is not a semidirect product of K and H for any subgroup H of G.
$\diamond 4.24$ Let \mathbb{K} be some field. $\operatorname{GL}(n, \mathbb{K})$ is the group of all nondegenerate $n \times n$ matrices.
$\operatorname{SL}(n, \mathbb{K})=\{A \in \operatorname{GL}(n, \mathbb{K}), \quad \operatorname{det} A=1\}, \Lambda=\left\{\lambda E, \quad \lambda \in \mathbb{K}^{*}\right\}(E$ is the unit matrix $)$.
a) Prove that $\mathrm{SL}(n, \mathbb{K}) \triangleleft \mathrm{GL}(n, \mathbb{K})$.
b) Prove that $\Lambda=Z(\operatorname{SL}(n, \mathbb{K}))=Z(\operatorname{GL}(n, \mathbb{K})) ; \Lambda \cap \operatorname{SL}(n, \mathbb{K})=Z(\operatorname{SL}(n, \mathbb{K}))$.

Def 4.5 Projective linear group is $\operatorname{PSL}(n, \mathbb{K})=\operatorname{SL}(n, \mathbb{K}) /(\Lambda \cap \operatorname{SL}(n, \mathbb{K}))$.
$\diamond 4.25$ Prove that
a) $\operatorname{PSL}\left(2, \mathbb{Z}_{2}\right) \cong S_{3} ;$
b) $\operatorname{PSL}\left(2, \mathbb{Z}_{3}\right) \cong A_{4} ; \quad{ }^{\text {c }}$) $\operatorname{PSL}\left(2, \mathbb{Z}_{5}\right) \cong A_{5}$.

