1. Basic definitions.

Def 1.1 Binary operation $*$ on a set A is a mapping $A \times A \rightarrow A$. The element which is attached to the pair $(a ; b) \in A \times A$ is denoted by $a * b$.

For a given sets X and Y the set of all functions $f: X \rightarrow Y$ will be denoted by $\mathcal{F}(X ; Y)$; the set of all bijective functions $f \in \mathcal{F}(X ; X)$ will be denoted by $\mathcal{S}(X)$. For two functions $f \in \mathcal{F}(X ; Y), g \in \mathcal{F}(Y ; Z)$ their composition $f \circ g$ is defined in a standard way: for $x \in X(f \circ g)(x)=f(g(x))$. Thus composition of functions is a binary operation on $\mathcal{F}(X ; X)$; note that composition is also a binary operation on $\mathcal{S}(X)$.

Def 1.2 A binary operation $*$ on a set A is called commutative if $\forall a, b \in A a * b=b * a$.
\diamond 1.1 1) Prove that for $|X|>1$ composition on $\mathcal{F}(X ; X)$ is not commutative.
2) Prove that for $|X|>2$ composition on $\mathcal{S}(X)$ is not commutative.

Def 1.3 A binary operation $*$ on a set A is called associative if $\forall a, b, c \in A(a * b) * c=a *(b * c)$.
$\diamond \mathbf{1 . 2} 1)$ Give an example of a commutative but not associative operation.
2) Give an example of an associative but not commutative operation.
3) Give an example of such an operation $*$ that $(a * a) * a \neq a *(a * a)$ for some $a \in A$.

Def 1.4 An element $\varepsilon \in A$ is called neutral element for the operation $*$ on A if $\forall a \in A a * \varepsilon=\varepsilon * a=a$.
\diamond 1.3 Prove that a set with a binary operation has at most one neutral element.
\diamond 1.4 Find the neutral element (if it exists) for the following operations:

1) composition of functions on the set $\mathcal{F}(X ; X)$;
2) composition of functions on the set $\mathcal{S}(X)$;
3) $\max (a, b)$ on the set of real numbers \mathbb{R};
4) $\max (a, b)$ on the set of nonnegative real numbers $\{x \in \mathbb{R}, \quad x \geq 0\}$;
5) vector product of vectors in 3-dimensional space;
6) (a, b) on the set of natural numbers \mathbb{N} (here (k, l) is the greatest common divisor of k and l);
7) $\operatorname{LCM}(a, b)$ on the set of natural numbers \mathbb{N} (here $\operatorname{LCM}(k, l)$ is the least common multiple of k and $l)$;
8) a^{b} on the set of nonnegative integers $\{x \in \mathbb{Z}, \quad x \geq 0\}$;
9) $A \cup B$ on $\mathcal{B}(\Omega)$ (here $\mathcal{B}(\Omega)$ is the set of all subsets of a given set Ω);
10) $A \cap B$ on $\mathcal{B}(\Omega)$;
11) symmetric difference of two sets $A \oplus B=(A \backslash B) \cup(B \backslash A)$ on $\mathcal{B}(\Omega)$.

Def 1.5 Let $\varepsilon \in A$ be the neutral element for an operation $*, a \in A$. An element $b \in A$ is called inverse for a if $a * b=b * a=\varepsilon$. The inverse element is usually denoted by a^{-1}.

Remark For commutative operation sometimes the operation is denoted by plus (+), the neutral element is denoted by 0 and the inverse element is denoted $-a$ (then it is called opposite element for a). Note that such additive notations are used only for commutative operations!
$\diamond \mathbf{1 . 5} 1)$ Prove that if the operation is associative then any element $a \in A$ has at most one inverse.
2) Prove that if the operation is associative and a^{-1} and b^{-1} exist then $\exists(a b)^{-1}=b^{-1} a^{-1}$.
\diamond 1.6 Prove that a mapping $f: X \rightarrow X$ has an inverse mapping (under composition) if and only if f is bijective.
\diamond 1.7 For which of the examples of $\diamond 1.4$ each element has its inverse?
\diamond 1.8 Prove that a remainder $\bar{a} \in \mathbb{Z}_{n}$ is invertible (under multiplication) if an only if a and n are relatively prime (i.e. $(a, n)=1)$.

Def 1.6 Group is a set G with an associative binary operation having neutral element ε such that any element of G has its inverse.

For finite groups $|G|$ is called the order of the group G.
$\diamond \mathbf{1 . 9} 1$) Prove that $\mathcal{S}(X)$ is a group (under composition).
2) Prove that \mathbb{Z}_{n} is a group under addition.
3) Prove that $\mathbb{Z}_{n}^{*}=\left\{\bar{a} \in \mathbb{Z}_{n}, \quad \bar{a}\right.$ is invertible $\}$ is a group (under multiplication).
4) $\operatorname{GL}(n, \mathbb{K})$ is the set of all non-degenerate $n \times n$ matrices over a field \mathbb{K} and $\operatorname{SL}(n, \mathbb{K})=\{A \in \mathrm{GL}(n, \mathbb{K}) \quad, \quad \operatorname{det} A=1\}$. Prove that $\mathrm{GL}(n, \mathbb{K})$ and $\mathrm{SL}(n, \mathbb{K})$ are groups (under multiplication of matrices).

The group $\mathcal{S}(X)$ for the standard set $X=\{1,2, \ldots, n\}$ is denoted by \mathcal{S}_{n} and is called permutation group.
$\left.\left.\diamond 1.101)\left|\mathcal{S}_{n}\right|=? \quad *_{2}\right) \mathrm{GL}\left(n, \mathbb{F}_{p}\right)=? \quad * 3\right) \mathrm{SL}\left(n, \mathbb{F}_{p}\right)=?$
Def 1.7 Group G is called abelian or commutative if its operation is commutative.
Note that for abelian groups additive notations are sometimes used.
\diamond 1.11 Give example of a set G with a commutative binary operation having neutral element ε such that any element of G has its inverse but G is not a group.
$\diamond \mathbf{1 . 1 2}$ 1) Prove that in a group G any equation of the form $a x=b$ and $x a=b$ have a unique solution.
2) Prove that a set G with an associative binary operation is a group if any equation of the form $a x=b$ and of the form $x a=b$ has a unique solution.
\diamond 1.13 Prove that if $\forall a \in G a^{2}=\varepsilon$ then G is abelian.
Def 1.8 A group G is called cyclic if $\exists a \in G$ such that $\forall b \in G \quad b=a^{n}$ for certain $n \in \mathbb{Z}$. Such a is called the generator of G.
$\diamond \mathbf{1 . 1 4} 1$) Prove that \mathbb{Z} and \mathbb{Z}_{n} (under addition) are cyclic groups.
2) List all the generators of \mathbb{Z} and \mathbb{Z}_{n} for $n \leq 10$.
3) Give a necessary and sufficient condition for $\bar{a} \in \mathbb{Z}_{n}$ to be a generator of \mathbb{Z}_{n}.
$\diamond \mathbf{1 . 1 5} 1)$ Which of the groups $\mathbb{Z}_{n}^{*}($ see $\diamond 1.9 .3), n=3,4,5, \ldots, 11,12$ are cyclic?
$\left.{ }^{*} 2\right)$ Prove that for p prime \mathbb{Z}_{p}^{*} is cyclic.
$\diamond \mathbf{1 . 1 6} 1)$ Give an example of a finite group which is not cyclic.
2) Give an example of an infinite group which is not cyclic.

Def 1.9 A subset H of a group G is called subgroup if H is also is group under the same operation.
Note that this definition implies that $\forall a, b \in H \quad a b \in H, a^{-1} \in H$ and $\varepsilon \in H$; and these three conditions are sufficient for H to be a subgroup.
\diamond 1.17 Find cyclic subgroups in the following groups:

1) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ under addition;
2) $\mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}, \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}, \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ under multiplication.
3) Which of these groups contain finite cyclic subgroups? Which of these groups contain finite cyclic subgroups of arbitrary order?
$\diamond \mathbf{1 . 1 8} 1)$ Prove that any subgroup of a cyclic group is cyclic.
4) Prove that if G is a cyclic group, $|G|=n, H$ is a subgroup of $G,|H|=k$, then $k \mid n$.
5) Prove that if G is a cyclic group, $|G|=n, k \mid n$. Then G has exactly one subgroup H of order k.
\diamond 1.19 Let G be a group, $a \in G$. Consider the set $H=\left\{a^{n}, \quad n \in \mathbb{Z}\right\}$. Prove that
6) H is a subgroup of G;
7) H is the minimal subgroup of G containing a (i.e. any subgroup of G, containing a, contains H);
8) H is cyclic group and a is its generator.

Def 1.10 The subgroup H defined in $\diamond 1.19$ is called the cyclic subgroup generated by a. We shall denote this subgroup by $\langle a\rangle$. If $\langle a\rangle$ is finite then its order is called the order of the element a and denoted by ord a. For $\langle a\rangle$ infinite we put $\operatorname{ord}(a)=\infty$.
$\diamond \mathbf{1 . 2 0}$ Let G be a group, $a, b \in G$. Prove the following statements.

1) $\operatorname{ord}(a)=\operatorname{ord}\left(b^{-1} a b\right)$.
2) If $a^{m}=\varepsilon$ then $\operatorname{ord}(a) \mid m$.
3) If m and $\operatorname{ord}(a)$ are relatively prime then $\operatorname{ord}\left(a^{m}\right)=\operatorname{ord}(a)$.
4) If $m \mid \operatorname{ord}(a)$ then $\operatorname{ord}\left(a^{m}\right)=\frac{\operatorname{ord}(a)}{m}$.
5) $\forall m \operatorname{ord}\left(a^{m}\right)=\frac{\operatorname{ord}(a)}{(\operatorname{ord}(a), m)}$. $((k, l)$ is the greatest common factor of k and l. $)$
6) If $a b=b a$ then $\operatorname{ord}(a b) \mid \operatorname{LCM}(\operatorname{ord}(a), \operatorname{ord}(b))(\operatorname{LCM}(k, l)$ is the least common multiple of k and l.)
*) $\forall k, m, n$ find an example of a group G and elements $a, b \in G$ such that $\operatorname{ord}(a)=k$, ord $(b)=m$, $\operatorname{ord}(a b)=n .(n=\infty$ is also possible! $)$

Def 1.11 Two groups G and L are called isomorphic if there exists a bijection $f: G \rightarrow L$ such that $\forall a, b \in G \quad f(a b)=f(a) f(b)$. This is denoted by $G \cong L$. The bijection f is called an isomorphism.
\diamond 1.21 Let $f: G \rightarrow L$ be an isomorphism. Prove that

1) $f\left(\varepsilon_{G}\right)=\varepsilon_{L}$ and $\left.f\left(a^{-1}\right)=f(a)^{-1} ; \quad 2\right)$ ord $a=\operatorname{ord} f(a)$;
2) H is a subgroup of $G \Leftrightarrow f(H)$ is a subgroup of L.
\diamond 1.22 Prove that any cyclic group is isomorphic to \mathbb{Z} or \mathbb{Z}_{n}.
\diamond 1.23 Consider following groups of order $4: \mathbb{Z}_{4}, \mathbb{Z}_{5}^{*}, \mathbb{Z}_{8}^{*}, \mathcal{B}(\Omega)$ under \oplus for $|\Omega|=2$ (see $\diamond 1.4 .11$). Which of these groups are pairwise isomorphic?
\diamond 1.24 Prove that any cyclic group is isomorphic to \mathbb{Z} or \mathbb{Z}_{n}.
$\diamond \mathbf{1 . 2 5} 1)$ Prove that any group of order 2 is isomorphic to \mathbb{Z}_{2}.
3) Prove that any group of order 3 is isomorphic to \mathbb{Z}_{3}.
*3) Classify (up to an isomorphism) groups of order 4.
Def 1.12 Consider two groups H and K. Define the operation on the direct product of the sets $H \times K$ by

$$
(h ; k) \cdot\left(h^{\prime} ; k^{\prime}\right)=\left(h h^{\prime} ; k k^{\prime}\right)
$$

Prove that $H \times K$ is a group under this operation. This group is called the direct product of the groups H and K.
\diamond 1.26 Suppose that a group G contains two subgroups H and K, such that:

1) $H \cap K=\{\varepsilon\}(\varepsilon$ is the unit element of the group $G)$;
2) $\forall h \in H$ and $\forall k \in K \quad h \cdot k=k \cdot h$;
3) $\forall g \in G$ may be expressed as $g=h \cdot k$ for some $h \in H$ and $k \in K$.

Then $G \cong H \times K$.
\diamond 1.27 Consider the groups $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}, \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}, \mathbb{R}_{+}^{*}=\{x \in \mathbb{R}, \quad x>0\}, \mathbb{S}^{1}=\{z \in \mathbb{C}, \quad|z|=1\}$, $\{ \pm 1\}$ under multiplication.

1) Prove that $\mathbb{R}^{*} \cong \mathbb{R}_{+}^{*} \times\{ \pm 1\}$.
2) Prove that $\mathbb{C}^{*} \cong \mathbb{R}_{+}^{*} \times \mathbb{S}^{1}$.
$\diamond \mathbf{1 . 2 8} \quad$ (1) For which m and $n \mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$?
(2) Theorem. Any finite group is isomorphic to a direct product of cyclic groups. (We shall prove this theorem later.)
(3) Classify abelian groups of order $8,12,16,24,36$.
(4) Represent all the non-cyclic groups from $\diamond 1.15$ as direct products of cyclic groups.
(5) Let G be a finite abelian group. Prove that G is isomorphic to a direct product $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{1}} \times \ldots \times \mathbb{Z}_{n_{k}}$ where $n_{i} \mid n_{i+1}$ for $i=1,2, \ldots, k-1$. Prove that the sequence of integers $n_{1}, n_{2}, \ldots, n_{k}$ is uniquely defined by G.
$\diamond \mathbf{1 . 2 9} 1)$ Find the orders of all elements of \mathcal{S}_{3} and \mathcal{S}_{4}.
3) Find all cyclic subgroups of \mathcal{S}_{3} and \mathcal{S}_{4}.
$\left.{ }^{*} 3\right)$ Find all subgroups of \mathcal{S}_{3} and \mathcal{S}_{4}.
$\left.{ }^{*} 4\right)$ Is \mathcal{S}_{3} or \mathcal{S}_{4} isomorphic to a direct product of some groups?
$\diamond 1.30$ Consider the Euclidean plane Π. The group $\mathcal{S}(\Pi)$ is very huge but it contains interesting smaller subgroups. Denote by \mathbb{E} the subgroup of $\mathcal{S}(\Pi)$ consisting of the mappings $f \in \mathcal{S}(\Pi)$ which preserve distance between any two points: $\forall A, B \in \Pi \quad|A B|=|f(A) f(B)|$. (Here $|A B|$ means the distance between A and B.) The group \mathbb{E} is very important for geometry but it is still too big for the beginners. Fix a regular polygon P_{n} with n sides and consider all the mappings from \mathbb{E} which preserve the P_{n}. These mappings form the dihedral group D_{n}.
4) Prove that D_{n} is a finite group and find its order. Give a geometrical description of all the elements of D_{n}.
5) Let a be a rotation, let s be a reflection in a line l passing through the center of the rotation a. Prove that sas $=a^{-1}$.
6) Find the orders of all elements of D_{n}.
7) Find all cyclic subgroups of D_{n}.
${ }^{*} 5$) Find all subgroups of D_{3} and D_{4}.
8) Is $D_{2 n} \cong D_{n} \times \mathbb{Z}_{2}$? (The answer depends on n.)
$\diamond 1.31$ 1) Consider four matrices from $\mathrm{GL}(2, \mathbb{C})$:

$$
E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), I=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), K=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

Consider the set $Q_{8} \subset \mathrm{GL}(2, \mathbb{C}), Q_{8}=\{ \pm E, \pm I, \pm J \pm K\}$. Prove that Q_{8} is a subgroup in $\mathrm{GL}(2, \mathbb{C})$.
2) Find the orders of all elements of Q_{8}.
3) Find all cyclic subgroups of Q_{8}.
*4) Find all subgroups of Q_{8}.
5) Is $D_{4} \cong Q_{8}$?
$6)$ Is Q_{8} isomorphic to a direct product of some groups?
\diamond 1.32 Which of these groups are pairwise isomorphic?

1) $S_{3}, D_{3}, \mathrm{GL}\left(2, \mathbb{F}_{2}\right) ;$ 2) $D_{8}, D_{4} \times \mathbb{Z}_{2}, Q_{8} \times \mathbb{Z}_{2}$;
2) $S_{4}, D_{12}, D_{6} \times \mathbb{Z}_{2}, D_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, D_{3} \times \mathbb{Z}_{4}, Q_{8} \times \mathbb{Z}_{3}$.
