1. Basic definitions.

Def 1.1 Binary operation * on a set A is a mapping $A \times A \rightarrow A$. The element which is attached to the pair $(a; b) \in A \times A$ is denoted by a * b.

For a given sets X and Y the set of all functions $f: X \to Y$ will be denoted by $\mathcal{F}(X; Y)$; the set of all bijective functions $f \in \mathcal{F}(X; X)$ will be denoted by $\mathcal{S}(X)$. For two functions $f \in \mathcal{F}(X; Y)$, $g \in \mathcal{F}(Y; Z)$ their composition $f \circ g$ is defined in a standard way: for $x \in X$ $(f \circ g)(x) = f(g(x))$. Thus composition of functions is a binary operation on $\mathcal{F}(X; X)$; note that composition is also a binary operation on $\mathcal{S}(X)$.

Def 1.2 A binary operation * on a set A is called *commutative* if $\forall a, b \in A$ a * b = b * a.

 \diamond **1.1** 1) Prove that for |X| > 1 composition on $\mathcal{F}(X;X)$ is not commutative.

2) Prove that for |X| > 2 composition on $\mathcal{S}(X)$ is not commutative.

Def 1.3 A binary operation * on a set A is called *associative* if $\forall a, b, c \in A$ (a * b) * c = a * (b * c).

 \diamond **1.2** 1) Give an example of a commutative but not associative operation.

2) Give an example of an associative but not commutative operation.

3) Give an example of such an operation * that $(a * a) * a \neq a * (a * a)$ for some $a \in A$.

Def 1.4 An element $\varepsilon \in A$ is called *neutral element* for the operation * on A if $\forall a \in A \ a * \varepsilon = \varepsilon * a = a$.

 \diamond **1.3** Prove that a set with a binary operation has at most one neutral element.

♦ 1.4 Find the neutral element (if it exists) for the following operations:

1) composition of functions on the set $\mathcal{F}(X;X)$;

- 2) composition of functions on the set $\mathcal{S}(X)$;
- 3) $\max(a, b)$ on the set of real numbers \mathbb{R} ;
- 4) max(a, b) on the set of nonnegative real numbers $\{x \in \mathbb{R}, x \ge 0\};$
- 5) vector product of vectors in 3-dimensional space;
- 6) (a, b) on the set of natural numbers \mathbb{N} (here (k, l) is the greatest common divisor of k and l);

7) LCM(a, b) on the set of natural numbers \mathbb{N} (here LCM(k, l) is the least common multiple of k and l); 8) a^{b} on the set of nonnegative integers $\{x \in \mathbb{Z}, x \geq 0\}$;

- 9) $A \cup B$ on $\mathcal{B}(\Omega)$ (here $\mathcal{B}(\Omega)$ is the set of all subsets of a given set Ω);
- 10) $A \cap B$ on $\mathcal{B}(\Omega)$;

11) symmetric difference of two sets $A \oplus B = (A \setminus B) \cup (B \setminus A)$ on $\mathcal{B}(\Omega)$.

Def 1.5 Let $\varepsilon \in A$ be the neutral element for an operation $*, a \in A$. An element $b \in A$ is called *inverse* for a if $a * b = b * a = \varepsilon$. The inverse element is usually denoted by a^{-1} .

Remark For commutative operation sometimes the operation is denoted by plus (+), the neutral element is denoted by 0 and the inverse element is denoted -a (then it is called *opposite* element for a). Note that such additive notations are used only for commutative operations!

 \diamond **1.5** 1) Prove that if the operation is associative then any element *a* ∈ *A* has at most one inverse. 2) Prove that if the operation is associative and *a*⁻¹ and *b*⁻¹ exist then $\exists (ab)^{-1} = b^{-1}a^{-1}$.

 \diamond **1.6** Prove that a mapping $f: X \to X$ has an inverse mapping (under composition) if and only if f is bijective.

 \diamond **1.7** For which of the examples of \diamond 1.4 each element has its inverse?

♦ **1.8** Prove that a remainder $\bar{a} \in \mathbb{Z}_n$ is invertible (under multiplication) if an only if a and n are relatively prime (i.e. (a, n) = 1).

Def 1.6 Group is a set G with an associative binary operation having neutral element ε such that any element of G has its inverse.

For finite groups |G| is called the *order* of the group G.

 \diamond **1.9** 1) Prove that $\mathcal{S}(X)$ is a group (under composition).

2) Prove that \mathbb{Z}_n is a group under addition.

3) Prove that $\mathbb{Z}_n^* = \{ \bar{a} \in \mathbb{Z}_n \ , \ \bar{a} \text{ is invertible} \}$ is a group (under multiplication).

4) $\operatorname{GL}(n,\mathbb{K})$ is the set of all non-degenerate $n \times n$ matrices over a field \mathbb{K} and $\operatorname{SL}(n,\mathbb{K}) = \{A \in \operatorname{GL}(n,\mathbb{K}) , \det A = 1\}$. Prove that $\operatorname{GL}(n,\mathbb{K})$ and $\operatorname{SL}(n,\mathbb{K})$ are groups (under multiplication of matrices).

The group $\mathcal{S}(X)$ for the standard set $X = \{1, 2, ..., n\}$ is denoted by \mathcal{S}_n and is called *permutation* group.

♦ **1.10** 1) $|S_n| = ?$ *2) GL $(n, \mathbb{F}_p) = ?$ *3) SL $(n, \mathbb{F}_p) = ?$

Def 1.7 Group G is called *abelian* or *commutative* if its operation is commutative.

Note that for abelian groups additive notations are sometimes used.

 \diamond **1.11** Give example of a set G with a commutative binary operation having neutral element ε such that any element of G has its inverse but G is not a group.

 \diamond **1.12** 1) Prove that in a group G any equation of the form ax = b and xa = b have a unique solution. 2) Prove that a set G with an associative binary operation is a group if any equation of the form ax = b and of the form xa = b has a unique solution.

♦ **1.13** Prove that if $\forall a \in G \ a^2 = \varepsilon$ then G is abelian.

Def 1.8 A group G is called *cyclic* if $\exists a \in G$ such that $\forall b \in G \ b = a^n$ for certain $n \in \mathbb{Z}$. Such a is called the *generator* of G.

 \diamond **1.14** 1) Prove that \mathbb{Z} and \mathbb{Z}_n (under addition) are cyclic groups.

2) List all the generators of \mathbb{Z} and \mathbb{Z}_n for $n \leq 10$.

3) Give a necessary and sufficient condition for $\bar{a} \in \mathbb{Z}_n$ to be a generator of \mathbb{Z}_n .

♦ **1.15** 1) Which of the groups \mathbb{Z}_n^* (see ♦1.9.3), $n = 3, 4, 5, \ldots, 11, 12$ are cyclic? *2) Prove that for p prime \mathbb{Z}_p^* is cyclic.

1.16 1) Give an example of a finite group which is not cyclic.
2) Give an example of an infinite group which is not cyclic.

Def 1.9 A subset H of a group G is called *subgroup* if H is also is group under the same operation.

Note that this definition implies that $\forall a, b \in H$ $ab \in H, a^{-1} \in H$ and $\varepsilon \in H$; and these three conditions are sufficient for H to be a subgroup.

♦ 1.17 Find cyclic subgroups in the following groups:

1) \mathbb{Q} , \mathbb{R} , \mathbb{C} under addition;

2) $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\}, \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ under multiplication.

3) Which of these groups contain finite cyclic subgroups? Which of these groups contain finite cyclic subgroups of arbitrary order?

 \diamond **1.18** 1) Prove that any subgroup of a cyclic group is cyclic.

- 2) Prove that if G is a cyclic group, |G| = n, H is a subgroup of G, |H| = k, then $k \mid n$.
- 3) Prove that if G is a cyclic group, $|G| = n, k \mid n$. Then G has exactly one subgroup H of order k.

♦ **1.19** Let G be a group, $a \in G$. Consider the set $H = \{a^n , n \in \mathbb{Z}\}$. Prove that 1) H is a subgroup of G;

2) H is the minimal subgroup of G containing a (i.e. any subgroup of G, containing a, contains H);

3) H is cyclic group and a is its generator.

Def 1.10 The subgroup *H* defined in \diamond 1.19 is called the *cyclic subgroup generated by a*. We shall denote this subgroup by $\langle a \rangle$. If $\langle a \rangle$ is finite then its order is called *the order of the element a* and denoted by ord *a*. For $\langle a \rangle$ infinite we put $\operatorname{ord}(a) = \infty$.

 \diamond **1.20** Let G be a group, $a, b \in G$. Prove the following statements.

1) $\operatorname{ord}(a) = \operatorname{ord}(b^{-1}ab).$

2) If $a^m = \varepsilon$ then $\operatorname{ord}(a) \mid m$.

3) If m and $\operatorname{ord}(a)$ are relatively prime then $\operatorname{ord}(a^m) = \operatorname{ord}(a)$.

4) If $m \mid \operatorname{ord}(a)$ then $\operatorname{ord}(a^m) = \frac{\operatorname{ord}(a)}{m}$.

5) $\forall m \text{ ord}(a^m) = \frac{\text{ord}(a)}{(\text{ord}(a),m)}$. ((k,l) is the greatest common factor of k and l.)

6) If ab = ba then $\operatorname{ord}(ab) | \operatorname{LCM}(\operatorname{ord}(a), \operatorname{ord}(b)) (\operatorname{LCM}(k, l) \text{ is the least common multiple of } k \text{ and } l.)$ *7) $\forall k, m, n$ find an example of a group G and elements $a, b \in G$ such that $\operatorname{ord}(a) = k$, $\operatorname{ord}(b) = m$, $\operatorname{ord}(ab) = n$. $(n = \infty \text{ is also possible!})$

Def 1.11 Two groups G and L are called *isomorphic* if there exists a bijection $f : G \to L$ such that $\forall a, b \in G \ f(ab) = f(a)f(b)$. This is denoted by $G \cong L$. The bijection f is called an *isomorphism*.

◇ 1.21 Let f : G → L be an isomorphism. Prove that
1) f(ε_G) = ε_L and f(a⁻¹) = f(a)⁻¹;
2) ord a = ord f(a);
3) H is a subgroup of G ⇔ f(H) is a subgroup of L.

 \diamond **1.22** Prove that any cyclic group is isomorphic to \mathbb{Z} or \mathbb{Z}_n .

 \diamond **1.23** Consider following groups of order 4: \mathbb{Z}_4 , \mathbb{Z}_5^* , \mathbb{Z}_8^* , $\mathcal{B}(\Omega)$ under \oplus for $|\Omega| = 2$ (see $\diamond 1.4.11$). Which of these groups are pairwise isomorphic?

 \diamond **1.24** Prove that any cyclic group is isomorphic to \mathbb{Z} or \mathbb{Z}_n .

 \diamond **1.25** 1) Prove that any group of order 2 is isomorphic to \mathbb{Z}_2 .

2) Prove that any group of order 3 is isomorphic to \mathbb{Z}_3 .

*3) Classify (up to an isomorphism) groups of order 4.

Def 1.12 Consider two groups H and K. Define the operation on the direct product of the sets $H \times K$ by

$$(h;k) \cdot (h';k') = (hh';kk').$$

Prove that $H \times K$ is a group under this operation. This group is called the direct product of the groups H and K.

◇ 1.26 Suppose that a group G contains two subgroups H and K, such that:
1) H ∩ K = {ε} (ε is the unit element of the group G);
2) ∀h ∈ H and ∀k ∈ K h ⋅ k = k ⋅ h;
3) ∀g ∈ G may be expressed as g = h ⋅ k for some h ∈ H and k ∈ K. Then G ≅ H × K.

 $\diamond \ \mathbf{1.27} \ \text{Consider the groups} \ \mathbb{R}^* = \mathbb{R} \setminus \{0\}, \ \mathbb{C}^* = \mathbb{C} \setminus \{0\}, \ \mathbb{R}^*_+ = \{x \in \mathbb{R}, \quad x > 0\}, \ \mathbb{S}^1 = \{z \in \mathbb{C}, \quad |z| = 1\},$ $\{\pm 1\}$ under multiplication. 1) Prove that $\mathbb{R}^* \cong \mathbb{R}^*_+ \times \{\pm 1\}.$

- 2) Prove that $\mathbb{C}^* \cong \mathbb{R}^*_+ \times \mathbb{S}^1$.
- (1) For which m and n $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$? $\diamond 1.28$
 - (2) **Theorem.** Any finite group is isomorphic to a direct product of cyclic groups. (We shall prove this theorem later.)
 - (3) Classify abelian groups of order 8, 12, 16, 24, 36.
 - (4) Represent all the non-cyclic groups from $\diamond 1.15$ as direct products of cyclic groups.
 - (5) Let G be a finite abelian group. Prove that G is isomorphic to a direct product $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$ where $n_i \mid n_{i+1}$ for i = 1, 2, ..., k-1. Prove that the sequence of integers $n_1, n_2, ..., n_k$ is uniquely defined by G.
- \diamond **1.29** 1) Find the orders of all elements of S_3 and S_4 .
- 2) Find all cyclic subgroups of S_3 and S_4 .
- *3) Find all subgroups of \mathcal{S}_3 and \mathcal{S}_4 .
- *4) Is \mathcal{S}_3 or \mathcal{S}_4 isomorphic to a direct product of some groups?

 \diamond 1.30 Consider the Euclidean plane Π . The group $\mathcal{S}(\Pi)$ is very huge but it contains interesting smaller subgroups. Denote by \mathbb{E} the subgroup of $\mathcal{S}(\Pi)$ consisting of the mappings $f \in \mathcal{S}(\Pi)$ which preserve distance between any two points: $\forall A, B \in \Pi |AB| = |f(A)f(B)|$. (Here |AB| means the distance between A and B.) The group \mathbb{E} is very important for geometry but it is still too big for the beginners. Fix a regular polygon P_n with n sides and consider all the mappings from \mathbb{E} which preserve the P_n . These mappings form the *dihedral* group D_n .

1) Prove that D_n is a finite group and find its order. Give a geometrical description of all the elements of D_n .

2) Let a be a rotation, let s be a reflection in a line l passing through the center of the rotation a. Prove that $sas = a^{-1}$.

- 3) Find the orders of all elements of D_n .
- 4) Find all cyclic subgroups of D_n .
- *5) Find all subgroups of D_3 and D_4 .
- 6) Is $D_{2n} \cong D_n \times \mathbb{Z}_2$? (The answer depends on n.)

 \diamond **1.31** 1) Consider four matrices from GL(2, \mathbb{C}):

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Consider the set $Q_8 \subset \operatorname{GL}(2,\mathbb{C})$, $Q_8 = \{\pm E, \pm I, \pm J \pm K\}$. Prove that Q_8 is a subgroup in $\operatorname{GL}(2,\mathbb{C})$. 2) Find the orders of all elements of Q_8 .

- 3) Find all cyclic subgroups of Q_8 .
- *4) Find all subgroups of Q_8 .
- 5) Is $D_4 \cong Q_8$?
- 6) Is Q_8 isomorphic to a direct product of some groups?

 \diamond **1.32** Which of these groups are pairwise isomorphic?

- 1) $S_3, D_3, \operatorname{GL}(2, \mathbb{F}_2);$ 2) D_8 , $D_4 \times \mathbb{Z}_2$, $Q_8 \times \mathbb{Z}_2$;
- 3) S_4 , D_{12} , $D_6 \times \mathbb{Z}_2$, $D_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $D_3 \times \mathbb{Z}_4$, $Q_8 \times \mathbb{Z}_3$.