$\diamond 4.26$ A subset $S \subset G$ is called the set of generators of the group G if $\forall g \in G$ can be represented as $g=s_{1}^{k_{1}} s_{2}^{k_{2}} \ldots s_{m}^{k_{m}}$, where $s_{i} \in S$.
(1) Cyclic group $=$ group with one generator.
(2) Find some minimal sets of generators for D_{n} and Q_{8}.
(3) Prove that S_{n} is generated by all the transpositions.
(4) Find two permutations generating S_{n}.
(5) Prove that A_{n} is generated by all the 3 -cycles (i.e. cycles $(i j k)$).
(6) Prove that $G L(n, K)$ is generated by all matrices of the form $E+\lambda A(k, l)$, where $\lambda \in K$ and $A(k, l)_{i, j}=$ $\delta_{k, i} \delta_{l, j},($ for $k=l, \lambda \neq-1)$.
$\diamond 4.27$ Let A be some set that we shall call the alphabet set. Consider the set $W(A)$ of all the finite sequences of the form $a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{n}^{\varepsilon_{n}}$, where $a_{i} \in A, \varepsilon_{i}= \pm 1, n \in \mathbb{N}$ (together with the empty sequence). Such sequences we shall call words. Reduction of a word $w=a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{n}^{\varepsilon_{n}}$ is a new word, obtained from w by deleting two symbols $a_{k}^{\varepsilon_{k}} a_{k+1}^{\varepsilon_{k+1}}$, such that $a_{k}=a_{k+1}$ and $\varepsilon_{k} \varepsilon_{k+1}=-1$. Two words are called equivalent if they become equal after some number of reductions. The set of equivalence classes will be denoted by $F(A)$. The operation on $F(A)$ is defined in the most natural way: if $u=a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{n}^{\varepsilon_{n}}$ and $v=b_{1}^{\mu_{1}} a_{2}^{\mu_{2}} \ldots a_{m}^{\mu_{m}}$, then $u \cdot v=a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \ldots a_{n}^{\varepsilon_{n}} b_{1}^{\mu_{1}} a_{2}^{\mu_{2}} \ldots a_{m}^{\mu_{m}}$.
(1) Prove that $F(A)$ is a group. It is called the free group, generated by the set A.
(2) Let $S \subset G$ be some set of generators of the group G. Prove that there exists unique surjective homomorphism $\varphi_{S}: F(S) \rightarrow G$, such that $\varphi(s)=s$. (On the left side s is the word in $F(S)$ and on the right side it is the element of G.) $\operatorname{Ker} \varphi_{S}$ is called the group of relations for the generators S of G.
(3) Verify that if the set of generators of D_{n} is $S=\{a, s\}$, where a is the order n rotation and s is a reflection, then the group of relations $\operatorname{Ker} \varphi_{S}$ is generated by the three elements a^{n}, s^{2}, sasa and their conjugates. (This simply means that if a group G is generated by such $\{a, s\}$ that ord $a=n>2$, ord $s=2$ and ord $s a=2$, then $G \cong D_{n}$.)
$\diamond 4.28 a, b \in G$. The commutator of the elements a and $b:[a, b]=a b a^{-1} b^{-1}$. The commutator group G^{\prime} is the subgroup of G, generated by all the commutators of all the pairs of elements of G.
(1) $G^{\prime}=\left\{\left[a_{1}, b_{1}\right] \cdot\left[a_{2}, b_{2}\right] \cdot \ldots \cdot\left[a_{m}, b_{m}\right], \quad a_{m}, b_{m} \in G\right\}$
(2) Prove that $G^{\prime} \triangleleft G$.
(3) Prove that G / G^{\prime} is an abelian group.
(4) Prove that $\forall f: G \rightarrow F$ where f is a homomorphism and F is an abelian group $\operatorname{Ker} f \supset G^{\prime}$. More precisely: \forall homomorphism $f: G \rightarrow F$ with F abelian $\exists i: G / G^{\prime} \rightarrow F$ such that the diagram

is commutative.
(5) Find Q_{8}^{\prime}.
(6) Prove that $D_{2 n+1}^{\prime}=C_{2 n+1}, D_{2 n}^{\prime}=C_{n}$.
(7) (*) Prove that $S_{n}^{\prime}=A_{n}, A_{n}^{\prime}=A_{n}$. (Hint: calculate the commutator of two transpositions; two 3-cycles; represent a 3 -cycle as a commutator of two even permutations; prove that A_{n} is generated by 3-cycles.)
(8) Let $S \subset G$ be some set of generators of an abelian group G. Prove that the group of relations $\operatorname{Ker} \varphi_{S} \supset$ $F(S)^{\prime}$.

