Логика и алгоритмы-2012. Дополнительные задачи

- **201.** Постройте 3-элементное множество X, такое что $\bigcup X \subset X$.
- **202.** Докажите равенство $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$,
- 203. Существуют ли такие множества А,В,С, что

$$A \cap B \neq \emptyset$$
, $A \cap C = (A \cap B) \setminus C = \emptyset$?

- 204. Докажите следующие равенства:
 - a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$,
 - б) $(E \times E) \setminus (A \times B) = ((E \setminus A) \times E) \cup (E \times (E \setminus B))$ (для $A, B \subset E$).
- **205**. Даны непустые множества A, B, такие что $A \times B = B \times A$. Докажите, что A = B.
- 206. Докажите, что композиция функций сохраняет инъективность и сюръективность.
- **207**. Постройте инъективное отображение множества X в себя, которое не является биекцией, для случаев:
- а) X = N, б) $X = R_+$ (множество положительных действительных чисел),
- B) $X = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1 \}.$
- **208**. Даны конечные множества A и B из n и 2 элементов, соответственно. Найдите количество сюръекций из A на B.
- 209. Какие из следующих отношений являются отношениями эквивалентности?
- a) $\{\langle x,y \rangle \in \mathbb{Q} \times \mathbb{Q}\} | 10(x-y) \in \mathbb{Z}\},$
- 6) $\{<<x,y>,<z,t>>=(N\times N)\times(N\times N)\}|x+t=y+z\},$
- в) отношение параллельности на множестве всех прямых в трехмерном пространстве,
- Γ) { $\langle x,y \rangle \in (N \times N) \mid x u y взаимно просты$ },
- д) $\{ \langle A,B \rangle \in (\mathcal{P}(\{1,2,3\}) \times \mathcal{P}(\{1,2,3\})) \mid A \cap B = \emptyset$ или $A = B \}$,
- e) $\{ \langle x, y \rangle \in (N \times N) \mid x^2 + y^2 \text{ четно} \}$.
- **210.** Пусть R отношение на множестве A, которое симметрично, транзитивно, а также удовлетворяет условию $\forall x \in A \exists y \in A xRy$. Докажите, что R отношение эквивалентности.
- **211.** Даны множества A,B,C, такие что A~B, A \cap B= \emptyset , |C|=2. Докажите, что A×C~A \cup B.
- **212.** Докажите, что если $A \sim B$, то $A^C \sim B^C$. Верно ли обратное утверждение?
- **213.** Докажите, что множество всех отношений линейного порядка на конечном множестве X равномощно множеству всех биекций $X \to X$.
- **214**. Постройте сюръективное отображение $f: \mathbf{R} \to \mathbf{R}$, которое не является биекцией.
- **215**. а) Докажите, что если $A \sim A'$, $B \sim B'$ и $A \cap B = A' \cap B' = \emptyset$, то $A \cup B \sim A' \cup B'$.
- б) Что можно утверждать в случае, если $A \sim A'$, $B \sim B'$ и $A \cap B \neq \emptyset$?
- **216.** Докажите, что если A ~ A' и B ~ B', то A × B ~ A' × B'.
- **217.** Докажите, что множество $\{X \mid X \subset N \land |X| = 2\}$ счетно.
- **218.** Докажите, что множество всех интервалов в ${\bf Q}$ (множестве рациональных чисел) счетно.
- **219.** Дано счетное множество A. Докажите, что в A существует счетная строго возрастающая последовательность подмножеств: $A_0 \subsetneq A_1 \subsetneq ... \subsetneq A_n \subsetneq ...$, такая что все множества $A_{n+1} \setminus A_n$ бесконечны.

- **220.** Докажите, что множество всех последовательностей рациональных чисел, стремящихся к 0, имеет мощность континуума.
- **221.** Докажите, что множество всех отображений $\mathbf{Q} \to \mathbf{R}$ имеет мощность континуума.
- 222. Докажите, что множество всех строго возрастающих последовательностей рациональных чисел имеет мощность континуума.
- **223.** Докажите, что множество всех строго возрастающих последовательностей действительных чисел имеет мощность континуума.
- 224. Докажите, что образ счетного множества при любом отображении не более чем счетен.
- **225.** Постройте диаграмму частично упорядоченного множества ($\mathcal{P}(\{0,1,2\}),\subset$).
- **226.** Докажите, что $(\mathcal{F}(X), \subset) \cong (\mathcal{F}(X), \supset)$.
- **227.** Рассмотрим множества N, Z, Q со стандартным отношением порядка. Постройте вложение упорядоченного множества N+Z в Q (т.е. изоморфизм на частично упорядоченное подмножество).
- **228.** Докажите, что линейно упорядоченные множества **Q+1** и **Q** не изоморфны.
- 229. Докажите, что линейно упорядоченные множества Q+Z и Q не изоморфны.
- **230.** Докажите, что всякое счетное линейно упорядоченное множество можно вложить в **Q.**
- **231.** Докажите, что всякое частично упорядоченное множество (X, R) можно вложить в $(\mathcal{F}(X), \subset)$.
- 232. Докажите, что если вполне упорядоченное множество бесконечно и имеет наибольший элемент, то оно имеет начальный отрезок, изоморфный ω.
- **233.** Рассмотрим множество M всех многочленов от переменной x степени не выше 3 с натуральными коэффициентами со следующим отношением \leq : $f \leq g$, если для всех достаточно больших x, $f(x) \leq g(x)$. Докажите, что (M, \leq) вполне упорядоченное множество.
- **234.** Докажите, что существует континуум различных вполне упорядочений множества N.
- 235. Докажите, что всякое вполне упорядоченное множество имеет единственный автоморфизм (т.е. изоморфизм на себя).
- **236.** Опишите все автоморфизмы для (\mathbf{Z} ,<).
- **237.** Существует ли вполне упорядоченное множество X, для которого $X+\omega \cong X$?
- **238.** Докажите, что для всякого вполне упорядоченного множества X найдется вполне упорядоченное множество Y, не изоморфное никакому начальному отрезку X.