HSE/Math in Moscow 2012-2013// Topology 2 // Problem sheet 7

Recall that a $C W$-complex is a topological space obtained inductively as follows. We start with X^{0}, which is a discrete space. Suppose we have constructed X^{n-1}. Then

$$
X^{n}=X^{n-1} \cup_{\sqcup \varphi_{\alpha}} \sqcup D_{\alpha}^{n}
$$

where D_{α}^{n} is an n-ball and $\varphi_{\alpha}: \partial D_{\alpha}^{n} \rightarrow X^{n-1}$ is a continuous map. In other words, X^{n} is obtained out of X^{n-1} by attaching some number of n-balls along continuous maps φ_{α}.

Equivalently, a CW-complex is a Hausdorff topological space X such that there are continuous maps $\gamma_{\alpha}^{n}: D^{n} \rightarrow X$ with the following properties:

- the restriction of γ_{α}^{n} to the interior of D_{α}^{n} is injective; the image of the interior of D_{α}^{n} under γ_{α}^{n} is called an open cell of X.
- X is a disjoint union of the of its open cells;
- (W) A subset of X is open if and only if its preimage under any γ_{α}^{n} is open in D_{α}^{n}, or, equivalently, if and only if its intersection with the closure of each cell is closed.
- (C) The closure of any cell is contained in the union of finitely many cells.

Note that conditions C and W are automatically satisfied if the number of the cells is finite. We do not prove that these two definitions are equivalent but you can look up a proof in Algebraic Topology (Appendix A) by A. Hatcher.

Question 1. Show that the following spaces are CW-complexes.
(a) Orientable compact surface of genus g.
(b) Nonorientable compact surface of genus g.
(c) Orientable compact surface of genus g with n boundary components.
(d) Nonorientable compact surface of genus g with n boundary components.
(e) S^{n}.
(f) $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$.
(g) $\mathbb{R} P^{n}$.
(h) $\mathbb{C} P^{n}$.

Question 2. Recall that a topological space X is normal iff for any two closed $Y, Z \subset X$ such that $Y \cap Z=\varnothing$ there exist open U, V such that $Y \subset U, Z \subset V$ and $U \cap V=\varnothing$. Using the first definition of CW-complexes show that any CW-complex is normal and Hausdorff.

Question 3. Find a CW structure on $S^{1} \vee S^{2}$ such that the closure of some cell is not a subcomplex.
Question 4. For each of the following spaces decomposed as unions of cells state which of the properties (C), (W) hold, if any.
(a) The unit disk in \mathbb{R}^{2} represented as the union of its interior and the elements of the boundary considered as 0 -cells.
(b) Let C_{n} be the circle in \mathbb{R}^{2} with centre at $\left(\frac{1}{n}, 0\right)$ and of radius $\frac{1}{n}$. The union $\bigcup_{n} C_{n}$ is called the Hawaiian earring. It can be represented as the union of the origin $(0,0)$, which is the 0 -cell, and the spaces $C_{n} \backslash\{(0,0)\}$, each of which is homeomorphic to an open interval.

Question 5. Show that for a CW-complex X the following statements are equivalent:
(a) X is connected.
(b) X is pathwise connected.
(c) X^{1} is connected.

Question 6. Show that a CW-complex with one 0 -cell and all the other cells having the same dimension is a wedge of spheres. (The topology on the wegde of infinitely many pointed spaces is introduced as follows: a subset of the wedge is open iff its intersection with each space is open.)

