HSE/Math in Moscow 2012-2013// Topology 2 // Problem sheet 5

The first few problem sheets started with general topology problems. But now we'll say goodbye to general topology (at least for a while) and proceed to our main topic, the (integral) homology groups.

Singular homology groups

Question 1. Compute the singular homology groups of the complex projective space $\mathbb{C} P^{n}$ (see problem sheet 3 for the definition of $\left.\mathbb{C} P^{n}\right)$. [Hint: let us denote the equivalence class of $\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1} \backslash\{0\}$ as $\left(z_{0}: \cdots: z_{n}\right)$; take $U_{1}=\mathbb{C} P^{n} \backslash\{(0: \cdots: 0: 1)\}, U_{2}=\left\{\left(z_{0}: \cdots: z_{n-1}: 1\right)\right\}$; show that U_{1} is homotopy equivalent to $\mathbb{C} P^{n-1}$ and that U_{2} is homeomorphic to \mathbb{C}^{n}, and then apply the Mayer-Vietoris exact sequence.]

Question 2. In this question our task is to calculate the homology of a compact orientable surface, possibly with boundary.
a) Show that the homology of the 2-torus $T^{2}=S^{1} \times S^{1}$ is given by $H_{i}\left(T^{2}\right) \cong \mathbb{Z}$ if $i=0,2, \mathbb{Z}^{2}$ if $i=1$ and 0 if $i \neq 0,1,2$. [Hint: one could e.g. represent one of the factors S^{1} as a union of two intervals and then times this with the other S^{1}.]
b) We shall say that a class $\in H_{1}(X)$ is represented by a loop $s: S^{1} \rightarrow X$ if it is equal $s_{*}(c(\gamma))$ where $c(\gamma)$ is the canonical generator of $H_{1}\left(S^{1}\right)$, see question 7 c) from the previous problem sheet. Describe loop representatives for the elements of some basis of $H_{1}\left(T^{2}\right)$.
c) Let X be the 2-torus with a small open disk removed and let S be the boundary of X. Using the results from part a) show that the map $H_{1}(S) \rightarrow H_{1}(X)$ induced by the inclusion $S \rightarrow X$ is zero. Deduce that $H_{1}(X) \cong H_{1}\left(T^{2}\right)$.
d) Let X be the connected sum of g 2-tori (see blackboard). Alternatively, X can be obtained as a result of identifying the edges of a regular $4 g$-gon as shown on the blackboard. It is not too hard to prove that the resulting spaces are homeomorphic but we will not do this. Let Y be X with a small open disk removed and let S be the boundary of Y. Prove that Y is homotopy equivalent to a wedge of $2 g$ circles and deduce that $H_{1}(Y) \cong \mathbb{Z}^{2 g}$.

Show by induction on g that
i) $H^{i}(X) \cong \mathbb{Z}$ if $i=0,2, \mathbb{Z}^{2 g}$ if $i=1$ and 0 if $i \neq 0,1,2$;
ii) the map $H_{1}(S) \rightarrow H_{1}(Y)$ induced by the inclusion $S \rightarrow X$ is zero.

Describe loop representatives for the elements of some basis of $H_{1}(X)$.
e) Let X be the closed unit disk in \mathbb{R}^{2} with n disjoint small open disks removed from the interior. Show that X is homotopy equivalent to a wedge of n circles and find loop representatives for the elements of some basis of $H_{1}(X)$. Note that X contains the unit circle S^{1} (since the disks we remove do not intersect it). Compute the image of the canonical generator of $H_{1}\left(S^{1}\right)$ under the map induced by the inclusion $S^{1} \subset X$.
f) Using the results of parts d) and e) calculate the homology groups of a connected sum of g tori with n disjoint open disks removed.

Question 3. Non-orientable surfaces can be tackled in a similar way:
a) Show that the real projective plane $\mathbb{R} P^{2}$ with a small open disk removed is homeomorphic to the Möbius strip.
b) Let X be the closed Möbius strip and let S be its boundary. Show that both $H_{1}(X)$ and $H_{1}(S)$ are isomorphic to \mathbb{Z} and find loop representatives for generators of both groups. Show that using these generators the map $H_{1}(S) \rightarrow$ $H_{1}(X)$ induced by the inclusion can be written as $x \mapsto \pm 2 x$.
c) Calculate the homology groups of the real projective plane.
d) Let X be the connected sum of g real projective planes (see blackboard). Alternatively, X can be obtained as a result of identifying the edges of a regular $2 g$-gon as shown on the blackboard. It is not too hard to prove that the resulting spaces are homeomorphic but we will not do this. Let Y be X with a small open disk removed and let S be the boundary of Y. Prove that Y is homotopy equivalent to a wedge of g circles and deduce that $H_{1}(Y) \cong \mathbb{Z}^{g}$.

Show by induction on g that
i) $H^{i}(X) \cong \mathbb{Z}$ if $i=0, \mathbb{Z}^{g-1} \oplus \mathbb{Z} / 2$ if $i=1$ and 0 if $i \neq 0,1$;
ii) the map $H_{1}(S) \rightarrow H_{1}(Y)$ induced by the inclusion $S \rightarrow X$ takes a generator of $H_{1}(S)$ to twice some generator of $H_{1}(Y)$.

Describe loop representatives for the elements of some basis of $H_{1}(X)$.
e) Using the results of part d) and part e) of the previous question calculate the homology groups of a connected sum of g real projective planes with n disjoint open disks removed.

Homological algebra

Question 4. Let $C_{*}^{i}, i=1,2,3$ be complexes with differentials ∂_{i}. Suppose $f^{1}, g^{1}: C_{*}^{1} \rightarrow C_{*}^{2}$ and $f^{2}, g^{2}: C_{*}^{2} \rightarrow C_{*}^{3}$ are maps of complexes and $D_{1}: C_{*}^{1} \rightarrow C_{*+1}^{2}$ and $D_{2}: C_{*}^{2} \rightarrow C_{*+1}^{3}$ be homotopies between f^{1} and g^{1} and between f^{2}
and g^{2} respectively, i.e.

$$
f^{1}-g^{1}=\partial_{2} D_{1}+D_{1} \partial_{1}, f^{2}-g^{2}=\partial_{3} D_{2}+D_{2} \partial_{2}
$$

Construct a homotopy between $f^{2} \circ f^{1}$ and $g^{2} \circ g^{1}$, i.e. a map $D: C_{*}^{1} \rightarrow C_{*+1}^{3}$ such that

$$
f^{2} \circ f^{1}-g^{2} \circ g^{1}=\partial_{3} D+D \partial_{1}
$$

[Hint: start by writing

$$
\begin{aligned}
& f^{1}=g_{1}+\partial_{2} D_{1}+D_{1} \partial_{1}, \\
& f^{2}=g_{2}+\partial_{3} D_{2}+D_{2} \partial_{2}
\end{aligned}
$$

and then compose.]

