HSE/Math in Moscow 2012-2013// Topology 2 // Problem sheet 9

Recall that in the lectures we introduced the cellular chain complex $\mathcal{C}_{*}(X)$ of a CW-complex X. We have $\mathcal{C}_{n}(X)=H_{n}\left(X^{n}, X^{n-1}\right)$ and the differential $\partial: \mathcal{C}_{n}(X) \rightarrow \mathcal{C}_{n-1}(X)$ is the connecting homomorphism of the triple (X^{n}, X^{n-1}, X^{n-2}). We have shown that the homology of $\mathcal{C}_{*}(X)$ is isomorphic to $H_{*}(X)$ functorially with respect to cellular maps.

Each group $\mathcal{C}_{n}(X)=H_{n}\left(X^{n}, X^{n-1}\right)$ is isomorphic to $H_{n}\left(\vee_{\alpha} S_{\alpha}^{n}\right)$ where α runs through the set of n-cells of X. Choose a generator $e_{n} \in H_{n}\left(D^{n}, S^{n-1}\right)$. Recall that we have maps $\gamma_{\alpha}^{n}: D^{n} \rightarrow X^{n}$ that take every boundary point to X^{n-1}. (These maps are in fact part of the CW-structure.) So for each α we have a generator $e_{\alpha}^{n}=\left(\gamma_{\alpha}^{n}\right)_{*}\left(e_{n}\right) \in$ $H_{n}\left(X^{n}, X^{n-1}\right)$. To calculate its image under the differential $\mathcal{C}_{n}(X) \rightarrow \mathcal{C}_{n-1}(X)$ we can do the following.

The map γ_{α}^{n} induces a map $S^{n-1} \rightarrow X^{n-1} \rightarrow X^{n-1} / X^{n-2}=\vee_{\beta} S_{\beta}^{n-1}$ where β runs through the n - 1-cells of X; this map will be denoted as φ_{α}^{n}. Let f_{n-1} be the image of e_{n} under the connecting homomorphism of the pair $\left(D^{n}, S^{n-1}\right)$. Then $\partial e_{\alpha}^{n}=\left(\varphi_{\alpha}^{n}\right)_{*}\left(f_{n-1}\right)$.

Question 1. Choose f_{1} to be the class of the loop $t \mapsto e^{2 \pi i t}, t \in[0,1]$ and choose $e_{2} \in H_{2}\left(D^{2}, S^{1}\right)$ accordingly. Using the CW-structure you have constructed in question 1, problem sheet 7, compute the resulting cellular chain complex for
(a) a orientable genus g surface without boundary.
(b) a non-orientable genus g surface without boundary.
[Hint: start with the 2-torus, respectively, the real projective plane.]
One can also define cellular chain complexes with coefficients in an abelian group M : for a CW-complex X we set $\mathcal{C}_{n}(X, M)=H_{n}\left(X^{n}, X^{n-1}, M\right)$ and the rest is completely similar to what happens in the case $M=\mathbb{Z}$. Note that since the homology of a sphere is a free abelian group we have $\mathcal{C}_{n}(X, M)=\mathcal{C}_{n}(X) \otimes M$. Just as in the case $M=\mathbb{Z}$ one shows that $H_{*}\left(\mathcal{C}_{*}(X, M)\right) \cong H_{*}(X, M)$ functorially with respect to cellular maps.

Similarly, one defines the cellular cochain complex of X by setting $\mathcal{C}_{n}(X, M)=H_{n}\left(X^{n}, X^{n-1}, M\right)$. The cohomology of the resulting complex will be isomorphic to $H^{*}(X, M)$ and we have

$$
\mathcal{C}^{*}(X, M) \cong \operatorname{Hom}\left(\mathcal{C}_{n}(X), M\right)
$$

as complexes.
Question 2. Using the results from problem sheet 5 calculate the homology with coefficients in $\mathbb{Z} / 2$ of a nonorientable genus g surface
(a) using the universal coefficients formula
(b) using the cellular chain complex
and compare the results.
Question 3. Let X be S^{n} and set $Y=X \cup_{f} D^{n+1}$ where $f: \partial D^{n+1}=S^{n} \rightarrow X$ be a map that takes some generator to m times a generator of $H_{n}(X)$. Set $Z=Y / X$.
(a) Equip X, Y, Z with CW-structures such that the maps $i: X \rightarrow Y, p: Y \rightarrow Z$ are cellular maps.
(b) Calculate the corresponding cellular chein complexes (with the differentials) and the chain maps induced by i and p.
(c) Show that p induces a zero map of $H_{>0}(-, \mathbb{Z})$ but not of $H_{n+1}(-, \mathbb{Z} / m)$ nor $H_{n+1}(-, \mathbb{Z} / m)$. Deduce that the splittings in the universal coefficients formulae are not functorial.

Question 4. Using the Künneth formulae and Question 1 calculate the integral homology of $\mathbb{R} P^{2} \times \mathbb{R} P^{2}$. Is it true that for all n we have

$$
H_{n}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{2}, \mathbb{Z}\right) \cong \Sigma_{p+q=n} H_{p}\left(\mathbb{R} P^{2}, \mathbb{Z}\right) \otimes H_{q}\left(\mathbb{R} P^{2}, \mathbb{Z}\right) ?
$$

Question 5. Using excision show that if M is a manifold and $x \in M$ then $H_{n}(M, M \backslash\{x\}) \cong \mathbb{Z}$.
Recall that a compact connnected m-manifold M is orientable if $H_{m}(M) \cong \mathbb{Z}$. An orientation of an orientable manifold is a choice of one of the two generators of this group. Once chosen this generator is denoted $[M]$ and called the fundamental class of $M)$ such that for any $x \in M$ the image of $[M]$ under the map $H_{n}(M) \rightarrow H_{n}(M, M \backslash\{x\}) \cong \mathbb{Z}$ is a generator.

If N is a connected oriented n-submanifold of an oriented compact connected m-manifold M then the image of [N] in $H_{n}(M)$ is called the homology class represented by N. There is the Poincaré isomorphism

$$
H^{i}(M) \cong H_{m-i}(M)
$$

If under this isomorphism cohomology classes c_{1}, c_{2} go to the homology classes represented by oriented submanifolds N_{1}, N_{2} then $c_{1} \smile c_{2}$ goes to the class represented by $N_{1} \cap N_{2}$, provided N_{1}, N_{2} intersect transversally.

The same holds when we consider homology and cohomology with coefficients in any commutative ring A, except that when $A=\mathbb{Z} / 2$ everything simplifies: for every compact m-manifold M we have $H_{m}(M, \mathbb{Z} / 2) \cong \mathbb{Z} / 2$ and clearly the latter group has just one generator.

Question 6. Calculate the cup product in
(a) $H^{*}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)$;
(b) $H^{*}\left(\mathbb{R} P^{2}, \mathbb{Z} / 2\right)$.

Question 7. In the lectures we have computed the cup product in the homology of orientable surface. Try to do the same for the cohomology with coefficients mod 2 of non-orientable surfaces.

