
HSE/Math in Moscow 2012-2013// Topology 2 // Problem sheet 4

General topology continued

Question 1. Let X be a topological space. We introduce an equivalence relation on X by declaring x ∼ y, x, y ∈ X

if and only if there is a path γ : [0, 1] → X such that γ(0) = x, γ(1) = y.
a) Show that this is indeed an equivalence relation. The resulting equivalence classes are called the path components

of X.
b) Show that the path components are path connected and that any path connected subspace of X is included in

some path component.

Question 2. Let X be a topological space. Let us introduce another equivalence relation on X by declaring
x ∼ y, x, y ∈ X if and only if there is a connected subspace of X that contains both x and y.

a) Show that this is indeed an equivalence relation. [Hint: prove that if Y1, Y2 are connected and Y1 ∩Y2 6= ∅ then
Y1 ∪ Y2 is connected.] The resulting equivalence classes are called the connected components of X.

b) Show that the connected components are indeed connected and that any connected subspace of X is included
in some connected component.

Since every subset of a topological space X is dense in its closure (prove it!), the closure of a connected subset of
X is again connected by question 2 a) from problem sheet 2, and so the connected components of X are closed. They
needn’t be open:

Question 3. Take X = Q with the topology induced from R. Show that the connected components are precisely
the 1-element subsets of X and that they are not open.

Question 4. Take X to be the space from question 7 b) from problem sheet 1 (the closure of the graph of
x 7→ sin 1

x
). What are the path components of X?

We know from problem list 1 that any path connected space is connected. So any path component is included in
some connected component. But it may happen that the same connected component contains several path components.
However, in most examples we’ll be interested in this does not happen and connected components and path components
are the same.

In particular, we say that a topological space X is locally path connected if any point of X has a path connected
neighbourhood. (Recall that a neighbourhood of x ∈ X is any open subset that contains x.)

Question 5. Show that the path components of a locally path connected space are open. Deduce that each con-
nected component contains precisely one path component, and hence that connected components and path components
coincide.

Representing homology classes by paths

Let X be a topological space. Two singular 1-chains c1, c2 ∈ C1(X) are homologous iff there is a c ∈ C2(X) such
that c1 − c2 = ∂c. If this is the case we write c1 ∼ c2.

Starting from a path γ : [0, 1] → X we can construct a 1-chain c(γ) using a natural identification of △1 ∼= [0, 1]
(namely, we identify (1, 0) ∈ △1 with 0 and (0, 1) with 1).

Question 6. a) Let γ1, γ2 : [0, 1] → X be paths such that γ1(1) = γ2(0). Let γ : [0, 1] → X be given by the
following formula: γ(t) = γ1(2t) for t ≤

1
2 and γ(t) = γ1(2t− 1) for t ≥ 1

2 . Show that γ is well defined and continuous;
it is called the concatenation of γ1 and γ2. Also show that c(γ) ∼ c(γ1) + c(γ2).

b) We say that paths γ1, γ2 : [0, 1] → X are homotopic rel boundary iff γ1(0) = γ2(0), γ1(1) = γ2(1) and there
is a homotopy F : [0, 1] × [0, 1] → X such that F (t, 0) = γ1(t), F (t, 1) = γ2(t), t ∈ [0, 1] and F (0, s) = γ1(0) =
γ2(0), F (1, s) = γ1(1) = γ2(1) for all s ∈ [0, 1]. In other words, the homotopy transforms one path into the other while
keeping the endpoints fixed. Show that if paths γ1, γ2 : [0, 1] → X are homotopic rel boundary, then c(γ1) ∼ c(γ2).

c) Let γ : [0, 1] → X be a path and let γ̄ : [0, 1] → X be defined as γ̄(t) = γ(1 − t), t ∈ [0, 1]. Show that
c(γ̄) + c(γ) ∼ 0.

Question 7. Now take X = S1 = {z ∈ C | |z| = 1}. In the lectures we have found that H1(S
1) ∼= Z. Now we

would like to visualise this result.
Let γ1 : [0, 1] → X and γ2 : [0, 1] → X be defined as follows:

γ1(t) = eπit, γ2(t) = eπi(t+1).

1



Set U1 = S1 \ {−i}, U2 = S1 \ {i} and U = {U1, U2}. Recall that in the lectures we have defined the complex
CU

∗ (X) as the subcomplex of C∗(X) generated as an abelian subgroup by singular simplices whose image is included
in one of open sets U1, U2.

a) Prove that c(γ1) + c(γ2)) is a cycle, i.e., ∂(c(γ1) + c(γ2)) = 0.
b) By considering the connecting homomorphism in the long exact sequence constructed from the short exact

sequence of complexes

0 → C∗(U1 ∩ U2)
+
→ C∗(U1)⊕ C∗(U2)

−
→ CU

∗ (X) → 0

prove that the homology class of c(γ1) + c(γ2) is a generator of H1(S
1).

c) Deduce from the previous question that the homology class of c(γ) also generates H1(S
1) where γ : [0, 1] → X

is given by

γ(t) = e2πit.

d) For z ∈ X set f(z) = z̄, fn(z) = zn (here n is a positive integer). Compute the mappings f∗, (fn)∗ : H1(S
1) →

H1(S
1) induced by f and fn respectively.

The homology of the sphere

Recall that

Sn =

{

(x1, . . . , xn+1) |
n+1
∑

k=1

x2
k
= 1

}

.

Question 8. Generalising the argument from the lectures show by induction on n that Hi(S
n) ∼= Z if i = 0, n

and 0 otherwise. [There is one slightly delicate point here: how to deal with H0? Fortunately, this is quite easy: if
spaces X,Y are both path connected, the map H0(X) → H0(Y ) induced by any continous map f : X → Y is an
isomorphism: we have seen in the lectures that both groups are isomorphic to Z and are generated by the homology
class of any singular 0-simplex. So, when both open subsets, as well as their intersection, are path connected, the
Mayer-Vietoris sequence in fact terminates at H1, meaning that the connecting homomorphism H1 → H0 is zero.]

Question 9. Set U1 = Sn \ (0, . . . ,−1), U2 = Sn \ (0, . . . , 1) and let f : Sn → Sn be the reflection in the x1 = 0
plane, i.e.,

f(x1, x2, . . . , xn+1) = (−x1, x2, . . . , xn+1).

Using the Mayer-Vietoris sequence show by induction on n that f induces minus identity in Hn(S
n).
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