
HSE/Math in Moscow 2012-2013// Topology 2 // Problem sheet 3

General topology continued

Let ∼ be an equivalence relation on a topological space X. We topologise the set of the equivalence classes X/ ∼
by declaring U ⊂ X/ ∼ open if and only if p−1(U) ⊂ X is open where p : X → X/ ∼ is the map that takes an x ∈ X
to its equivalence class [x].

With this definition the map p becomes continuous. Moreover,
Question 1. Let f : X → Y be a map from X to some topological space Y such that f(x1) = f(x2) whenever

x1 ∼ x2. We can then define a map f̄ : X/ ∼→ Y by f̄([x]) = f(x). Prove that f is continuous if and only if f̄ is.
One source of examples comes from group actions. Namely, let X be a topological space, G a topological group

and G×X → X, (g, x) → g · x, g ∈ G, x ∈ X a continuous left action of G on X. Then for x1, x2 ∈ X we set x1 ∼ x2

iff there is a g ∈ G such that x2 = g · x1. In general the resulting space, which we will denote X/G, is not very well
behaved: e.g., take X = R, G = R

∗ = R \ {0} with the standard product operation; G acts on X in a natural way and
the quotient consists of two points, [0] and [1], the first of which is closed while the second is not.

Question 2. Show that if G is compact and X is Hausdorff then X/G is again Hausdorff.
Question 3. Set X = R

n+1 \{0}, G = R
∗. The quotient space X/G will be denoted RPn. Show that it is compact

and Hausdorff. Moreover, show that each point of RPn has a neighbourhood homeomorphic to R
n. [Hint: show that

the natural map Sn/± Id → RPn is a homeomorphism.]
Question 4. More generally, set X to be the Stiefel manifold

Vm(Rn) = {(v1, . . . , vm) ∈ R
n × · · · × R

n | v1, . . . , vm are linearly independent}.

We set (v1, . . . , vm) ∼ (v′1, . . . , v
′
m) iff v1, . . . , vm and v′1, . . . , v

′
m span the same m-plane. Show that X/ ∼ is

compact, Hausdorff, and each of its points has a neighbourhood homeomorphic to R
m(n−m). This space will be called

the Grassmannian of m-planes in R
n and denoted Gm(Rn). [Hint: if Rn = V ⊕W then one can view V as the graph

of some mapping V → W , namely, the zero mapping. What other vector subspaces of Rn of dimension dimV can be
regarded as graphs of linear mappings V → W?]

In a similar way one defines the complex projective space CPn and the quaternionic projective space HPn, and also
complex and quaternionic Grassmannians, denoted Gm(Cn) and Gm(Hn) respectively. In the quaternionic case there
are two options: one can consider either left or right quaternionic subspaces. This does not make much difference,
as every left quaternionic subspace can be turned into a right one, and vice versa, via the quaternionic conjugation
a+ bi+ cj + dk 7→ a− bi− cj − dk, a, b, c, d ∈ R, so the resulting quaternionic Grassmannians are homeomorphic.

Another source of examples is as follows. Suppose we have two topological spaces X,Y and a continuous map
f : X ′ → Y where X ′ is a subspace of X. Then we can define an equivalence relation ∼ on X ⊔ Y as follows: for any
x1, x2 ∈ X ′ such that f(x1) = f(x2) = y ∈ Y we set x1 ∼ x2 ∼ y. The quotient space will be denoted as X ∪f Y and
will be called the result of attaching X to Y along f . In the particular case when Y is a point we will write X/X ′

instead of X ∪f Y .
Ths mapping cylinder Cyl(f) of a continous map f : X → Y is defined as (X× [0, 1])∪f0 Y where f0 : X×{0} → Y

is given by f0(x, 0) = f(x). The space Cone(f) = Cyl(f)/(X × {1}) will be called the mapping cone of f .
Question 5. (*) Show that the mapping cylinder of the natural map Sn → RPn is homeomorphic to RPn+1.

Homotopy

Two continuous maps f, g : X → Y are said to be homotopic if there is a continuous map F : X × [0, 1] → Y such
that for all x ∈ X we have F (x, 0) = f(x), F (x, 1) = g(x). We write f ∼ g to denote that f and g are homotopic.

Question 6. Prove that being homotopic is an equivalence relation on the set of all continuous maps X → Y .

Two topological spaces X and Y are homotopy equivalent iff there are continuous maps f : X → Y, g : Y → X
such that f ◦ g ∼ idY , g ◦ f ∼ idX .

Question 7. a) Let X ⊂ R
n be a set. Assume there is an x ∈ X such that for all x′ ∈ X the segment that joins x

and x′ is included in X (note that this holds e.g. when X is convex). Show that X and {x} are homotopy equivalent.
b) Set

X = Sn−1 = {(x1, . . . , xn) ∈ R
n |

∑

x2
i = 1}

and Y = R
n \ {0}. Show that X and Y are homotopy equivalent.

Question 8. Prove that the mapping cylinder of a continuous map f : X → Y is homotopy equivalent to Y .
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Homological algebra

Question 9. Let 0 → C ′
∗

i
→ C

p
→ C ′′

∗ → 0 is a short exact sequence of complexes with differentials ∂′, ∂, ∂′′. Let
[c′′] ∈ Hi(C

′′
∗ ) be the homology class of a cycle c′′ ∈ C ′′

i . The cycle c′′ is equal p(c), c ∈ Ci and p(∂c) ∈ C ′′
i−1 is 0, as

p(∂c) = ∂′′(p(c)) = ∂′′c′′ = 0. So ∂c = i(c′) for some c′ ∈ C ′
i−1.

We have ∂′c′ = 0, as i(∂′c′) = ∂(i(c′)) = ∂(∂(c)) = 0. Moreover, we saw in the lectures that if c′ is constructed
from [c′′] by the above procedure, then [c′′] 7→ [c′] gives a well-defined map △ : Hi(C

′′
∗ ) → Hi−1(C

′
∗). This means that

if c̃ ∈ Ci is a chain such that p(c̃) = c′′ + ∂′′c̃′′, c̃′′ ∈ C ′′
i+1, then for the cycle c̃′ ∈ C ′

i−1 such that i(c̃′) = ∂c̃ we have
[c′] = [c̃′].

This easily implies that the map △ : Hi(C
′′
∗ ) → Hi−1(C

′
∗) is a group homomorphism (lectures).

Prove that the sequence

· · · → Hi(C
′

∗) → Hi(C∗) → Hi(C
′′

∗ )
△
→ Hi−1(C

′

∗) → · · ·

is exact (here the maps Hi(C
′
∗) → Hi(C∗) and Hi(C∗) → Hi(C

′′
∗ ) are induced by i and p respectively, and △ is the

map that we have just constructed).
The following diagram might be of help.

0 −−−−→ C ′
i+1 −−−−→ Ci+1 −−−−→ C ′′

i+1 −−−−→ 0
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y





y

0 −−−−→ C ′
i −−−−→ Ci −−−−→ C ′′

i −−−−→ 0




y





y





y

0 −−−−→ C ′
i−1 −−−−→ Ci−1 −−−−→ C ′′

i−1 −−−−→ 0




y





y





y

0 −−−−→ C ′
i−2 −−−−→ Ci−2 −−−−→ C ′′

i−2 −−−−→ 0
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