SAMPLES OF HOMEWORK AND EXAM PROBLEMS FOR THE COURSE "RIEMANN SURFACES"

Elementary properties

1. Find zeroes and poles (with multiplicities) of the function $\left(1+z^{2}\right) /(1-$ z) on $\overline{\mathbb{C}}=\mathbb{C P}^{1}$ (2 points).
2. Put

$$
X=\left\{(z, w) \mid z^{3}+w^{3}=2\right\} \subset \mathbb{C}^{2} ;
$$

define a function $f: X \rightarrow \mathbb{C}$ by the formula $f:(z, w) \mapsto z w-1$. Find $\operatorname{ord}_{p}(f)$, where $p=(1,1)$. (3 points)
Find zeroes and poles (with multiplicities) for the following differential forms:
3. $z^{2} d z /(z+1)$ on $\overline{\mathbb{C}}=\mathbb{C P}^{1}$ (2 points);
4. $z d w$ on the Riemann surface

$$
X=\left\{(z, w): z^{4}+w^{4}=1\right\}
$$

Riemann surfaces corresponding to algebraic equations

1. Construct a compact Riemann surface X corresponding to the equation $w^{2}=\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-a_{3}\right)\left(z-a_{4}\right)$. Describe explicitly local coodinates at the points where z cannot serve as one.
2. Find poles (and their multiplicities) of the meromorphic form $d w$ on the Riemann surface X.
3. Find genus of the compact Riemann surface corresponding to the equation $w^{4}=z^{3}-1$.
4. Find poles of the form $d z / w^{4}$ on the above surface; at each of the poles, find residue of this form.

Branched coverings

1. Suppose that X is a compact Riemann surface and that $f: X \rightarrow \overline{\mathbb{C}}$ is a non-constant holomorphic mapping ramified over exactly two points of $\overline{\mathbb{C}}$. Prove that genus of X is zero and decribe the ramification of f.
2. Suppose that $f: X \rightarrow Y$ is a non-constant holomorphic mapping of compact and connected Riemann surfaces. Prove that

$$
(\text { genus of } X) \geq(\text { genus of } Y)
$$

3. Suppose that X is a compact Riemann surface of genus $3, Y$ is a compact Riemann surface of genus 2 , and $f: X \rightarrow Y$ is a non-constant holomorphic mapping.
(a) Prove that f is unramified.
(b) What can be said about $\operatorname{deg} f$?

Divisors and linear systems

1. Put $X=\overline{\mathbb{C}}$; for the divisor

$$
D=2 \cdot 1+1 \cdot 3-1 \cdot \infty
$$

on X, find a basis of the vector space $L(D)$.
2. Find a meromorphic form ω on $\overline{\mathbb{C}}$ such that $(\omega)=1 \cdot 0-3 \cdot 1$.
3. Denote by X the hyperelliptic Riemann surface corresponding to the equation

$$
w^{2}=\left(z-a_{1}\right) \ldots\left(z-a_{6}\right)
$$

where a_{1}, \ldots, a_{6} are distinct complex numbers. Denote by $\pi: X \rightarrow \overline{\mathbb{C}}$ the standard projection. If $P \in X$ is the only element of $\pi^{-1}\left(a_{1}\right)$, find $l(n P)$ for each $n \in \mathbb{Z}$.
4. (a) Suppose that X is a compact Riemann surface of genus $g>2$. Prove that the linear system $\left|2 K_{X}\right|$ defines an embedding of X into a projective space. Find dimension of this projective space.
(b) What happens if $g=2$?
5. Suppose that $X \subset \mathbb{C P}^{2}$ is a smooth projective curve of degree 4 and that P, Q, and R are three distinct points of X. Find $l(P+Q+R)$.

Elliptic curves

1. Express the EWisenstein series G_{4} in terms of G_{2} and G_{3}.
2. Find j-invariant of the elliptic curve $\mathbb{C} /\langle 1, i\rangle$.
