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CW-subcomplexes

A CW-complex is a Hausdorff topological space X such that there are continuous maps γn
α : Dn → X (where α

runs through some index set) with the following properties:

• The restriction of γn
α to the interior of Dn is a homeomorphism onto its image; the image of the interior of

Dn under γn
α is denoted enα and is called a(n open) n-cell of dimension n or a(n open) n-cell of X.

• X is the disjoint union of its open cells;

• (W) A subset of X is closed iff its intersection with the closure of each cell is closed.

• (C) The closure of any n-cell is contained in a union of finitely many cells of dimension < n.

A CW-subcomplex of a CW-complex X is a closed subspace of X that is a union of cells. If Y ⊂ X is a CW-
subcomplex of a CW-complex, then X/Y is again a CW-complex: let p : X → X/Y be the projection; whenever
enα ∩ Y = ∅ we define the map γ̄n

α as the composition p ◦ γn
α; these, together with the map that takes the point D0 to

what has become of Y , give one a CW-structure on X/Y .
Question 1. Let X be the 2-torus equipped with the CW-structure shown on the blackboard (one 0-cell, two

1-cells and one 2-cell. List all CW-subcomplexes of X and the corresponding quotient complexes.

Question 2. Give an example of a CW-complex such that the closure of an open cell is not a subcomplex.

Wedges

A pointed space is a couple (X,x) consisting of a topological space X and point x ∈ X, called the basepoint.
Suppose we have a (possibly infinite) family {(Xi, yi)} of pointed spaces. Set X =

⊔
Xi and let ∼ be the equivalence

relation on X generated by xi ∼ xj , i 6= j. The quotient X/ ∼ will be called the wedge of {(Xi, yi)} and will be
denoted

∨
i(Xi, xi). Whenever we need a basepoint in this space, we take it to be the equivalence class of all xi’s.

When it is clear or irrelevant which points xi ∈ Xi we take, we’ll be dropping them and simply writing Xi,
∨

i Xi etc.
It follows from the definition of quotient topology that if Y is another topological space then a continuous map

f :
∨

i(Xi, xi) → Y is the same as a family fi : Xi → Y of continuous maps such that fi(xi) = fj(xj) for all i, j.
Question 3. Let X be a CW-complex such that it has one 0-cell and all its other cells have the same dimension

n > 0. Show that X is homeomorphic to a wedge of n-spheres. [Hint: show that if
∨

i(Xi, xi) is the wedge of {(Xi, yi)}
then a neighbourhood of the basepoint is the

∨
i(Ui, xi) where Ui is an open subset of Xi that contains xi.]

Question 4. Show that, conversely, a wedge of spheres of dimensions > 0 (those dimensions do not have to be
the same) can be equipped with a CW-structure with one 0-cell and some number of cells of dimension > 0, one per
sphere in the wedge.

Question 5. Show that an infinite wedge of circles is not metrisable, i.e., that the wedge topology on it can not
be induced by any metric. [Hint: take any metric that induces the usual topology on each circle and for any ε > 0
construct an open subset that contains the basepoint x but not contained in U(x, ε).]

So some even relatively simple CW-complexes are too large to live in R
n (or, in fact, any metric space). The reason

is that they contain a lot of open sets, which is precisely why they often come in useful: there are lots of continuous
maps from them to other spaces.

Question 6. For each of the following spaces decomposed as unions of cells state which of the properties (C), (W)
hold, if any.

(a) The unit disk in R
2 represented as the union of its interior and the elements of the boundary considered as

0-cells.
(b) Let Cn be the circle in R

2 with centre at ( 1
n
, 0) and of radius 1

n
. The union

⋃
n Cn is called the Hawaiian

earring. It can be represented as the union of the origin (0, 0), which is the 0-cell, and the spaces Cn \ {(0, 0)}, each
of which is homeomorphic to an open interval.

Part (b) illustrates what happens when one tries to fit an infinite wedge into a Euclidean space: one ends up with
a space that looks as if it is homeomorphic to the wedge but in fact isn’t.

Connectedness

Recall that the n-skeleton Xn of a CW-complex X is the union of all cells of X of dimenion ≤ n. This is a
CW-subcomplex of X.

1



Question 7. Show that for a CW-complex X the following properties are equivalent:
(i) X is path-connected.
(ii) X is connected.
(iii) X1 is connected.
(iv) X1 is path connected.
[Hint: one could try showing that 1. every point can be joined with an element of X0 and 2. that every element

of X1 has a path connected neighbourhood, and then apply one of the results from the revision sheet.]

Problems for discussion

Earlier in this course we have considered applications of topology to algebra (“the main theorem of algebra”) and
analysis (existence and uniqueness of solutions of ODE’s). Let us now consider an application to algebraic geometry.
A complex plane projective curve is the set of all (x0 : x1 : x2) ∈ CP 2 such that f(x0 : x1 : x2) = 0 where f is a
homogeneous polynomial of degree d with complex coefficients. Such a curve is non-singular iff the gradient of f does
not vanish at any point of the curve. It can be shown that if this is the case, then the curve is homeomorphic to a

compact orientable surface of genus g = (d−1)(d−2)
2 with empty boundary. We do not show this here but hopefully will

show this later, when we’ve seen the Riemann-Hurwitz formula.
Real plane projective curves are defined in a similar way. Harnack’s theorem says that a non-singular (in the

complex sense) degree d plane projective curve in RP 2 can have no more than (d−1)(d−2)
2 + 1 connected components

(“ovals”). Below we give a proof of that, modulo some facts from differential geometry; these facts seem intuitvely
plausible but their proof requires a bit of machinery which we don’t have, so we do not attempt it here.

Below X is a smooth compact orientable surface X, possibly non-connected and possibly with boundary. Recall
that the genus g(X) of X is the sum of the genera of all connected surfaces that are obtained by attaching disks to
all boundary components of X.

1. Let C ⊂ X be a curve that does not intersect the boundary and let Y be the result of cutting X along C, i.e. Y
is X minus a small open tubular neighbourhood of C. Show that g(Y )− b0(Y ) = g(X)− b0(X)− 1 where b0 denotes
the 0-th Betti number, i.e., the number of the connected components.

2. Now suppose X be a closed genus g surface. (Recall that closed means connected, orientable and without
boundary.) Deduce from the previous part that if we cut X along g+2 pairwise non-intersecting curves, the resulting
surface will have at least 3 connected components.

3. Let X be as in the previous question and let σ be a smooth involution of X, i.e., σ is a smooth map X → X such
that σ ◦σ = Id. Let us denote the fixed point set of X as Xσ. Assume that Xσ is a union of pairwise non-intersecting
curves. Then it can be shown that Y = X/〈σ〉 can be made into a smooth surface with boundary homeomorphic to
Xσ, so that the natural quotient map X → Y is smooth. We will assume this. Show that Y is connected and deduce
that so is (X \Xσ)/〈σ〉.

4. Deduce from the previous question that X \Xσ has at most two boundary components. Deduce using question
2 that the number of the components of Xσ is at most g + 1.
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