Contractible spaces

Question 1. Question 9 on p. 19, A. Hatcher, Algebraic topology (English edition).

The fundamental group

Let $x_0 \in X$ be a point of a path connected space X. Continuous maps $\gamma : [0,1] \to X$ such that $\gamma(0) = \gamma(1) = x_0$ will be called *loops in* X based at x_0 and the set of all such maps will be denoted $\Omega(X, x_0)$ or simply $\Omega(X)$ when it is clear or irrelevant which point we take as x_0 . We introduce an equivalence relation \sim on $\Omega(X, x_0)$ by declaring $\gamma_0 \sim \gamma_1$ iff there is a homotopy $F : [0,1] \times [0,1] \to X$ such that $F(s,0) = \gamma_0(s), F(s,1) = \gamma_1(s)$ for all $s \in [0,1]$ and $F(0,t) = F(1,t) = x_0$. Note that this is just a homotopy as defined in problem sheet 6 but this time it is only allowed to pass through loops based at x_0 , and not just any maps $[0,1] \to X$.

Question 2. Show that this is indeed an equivalence relation.

The quotient $\Omega(X, x_0) / \sim$ will be denoted $\pi_1(X, x_0)$ and will be called the *fundamental group* of X. The reason it is called a group will be revealed shortly.

Recall that a *binary operation* on a set X is a map $*: X \times X \to X$. It is common to denote the result of applying * to a couple (x, y) as x * y rather than *(x, y). For example, the usual arithmetic operations $+, -, \cdot$ are binary operations on the sets of integer, rational, real or complex numbers. Division is a bit trickier. E.g., it is a binary operation on \mathbb{Q}^* , the set of all *non-zero* rational numbers, but it is *not* a binary operation \mathbb{Q} , as division by zero is not defined.

A set G with a binary operation $*: G \times G \to G$ is called a group iff the following axioms hold

- Associativity: a * (b * c) = (a * b) * c for all $a, b, c \in G$.
- Existence of a unit: there is an $e \in G$ called a *unit element*, or simply a *unit*, such that e * a = a * e = a for all $a \in G$.
- Existence of inverses: for any $a \in G$ there is an a^{-1} called the *inverse* of a such that $a^{-1} * a = a * a^{-1} = e$.

Here is a warm-up question on groups.

Question 3. Determine which of the following (if any) are groups, state which of the axioms hold (if any) and explain your answers.

- (a) The integers under subtraction.
- (b) The integers under multiplication.
- (c) All self-maps of a given set under composition of maps.
- (d) The residues 2,4,6,8 modulo 10 under multiplication.

If we have a binary operation * on a set G, it is common to simply write gh instead of g * h. If the operation we consider is associative, then there is no need to write the brackets either, as, e.g., any way to put the brackets in $g_1g_2g_3g_4$ will result in the same element of G. Note that however, the order matters: gh needn't be equal hg.

Now let (X, x_0) again be a pointed topological space and let us define a binary operation on $\Omega(X, x_0)$: for $\gamma_0, \gamma_1 \in \Omega(X, x_0)$ set $\gamma_0 \cdot \gamma_1$ to be the loop γ such that $\gamma(t) = \gamma_0(2t)$ for $t \in [0, \frac{1}{2}]$ and $\gamma(t) = \gamma_1(2t-1)$ for $t \in [\frac{1}{2}, 1]$.

Question 4. Take $X = S^1$ and let $x_0 \in X$ be any point. (a) Show that the operation \cdot defined above is not associative and does not have a unit. (b) Show however that if $\gamma_0 \sim \gamma'_0$ and $\gamma_1 \sim \gamma'_1$, then $\gamma_0 \cdot \gamma_1 \sim \gamma'_0 \cdot \gamma'_1$.

Question 5. Using part (b) of the previous question we can define a binary operation on $\pi_1(X, x_0)$ as follows: $[\gamma_0] \cdot [\gamma_1] = [\gamma_0 \cdot \gamma_1]$. Show that this makes $\pi_1(X, x_0)$ a group.

Subgroups

A subgroup of a group G is a subset of G that is a group under the operation of G. A subgroup $H \subset G$ is normal iff for all $g \in G$

$$g^{-1}Hg = \{g^{-1}hg \mid h \in H\} = H.$$

Question 6. (a) Show that \mathbb{Z} is a group under addition. Is $\mathbb{Z}_{>0} \subset \mathbb{Z}$ a subgroup of \mathbb{Z} ?

(b) Show that all self-*bijections* of a given set X form a group under composition of maps (cf. question 3 a). If $X = \{1, 2, ..., n\}$ then this group is denoted S_n and is called the *permutation group* on n letters. Give an example of a normal and a non-normal subgroup of S_3 .

If $H \subset G$ is a subgroup and $g \in G$ then we define $gH = \{gh \mid h \in H\}$, the *left coset* of H in G, and $Hg = \{hg \mid h \in H\}$, the *right coset* of H in G.

Question 7. Let G be a group, $H \subset G$ a subgroup and g_1, g_2 elements of G.

(a) Show that the cosets g_1H and g_2H either are equal or do not intersect.

(b) Show that there is a bijection $g_1H \to g_2H$.

(c) Show that any element of G belongs to some left coset.

(d) Deduce Lagrange's theorem: the number of elements of any finite group is divisible by the number of elements of any of its subgroups.

So in particular, a group with 20 elements can't have a subgroup with 19 elements.

Problems for discussion

We keep the notation from the previous problem sheet.

1. Set H^i to be the half space

$$\{(x_1, \ldots, x_i, 0, \ldots, 0) \in \mathbb{R}^n \mid x_i > 0\}$$

If σ is a sequence $1 \leq \sigma_1 < \cdots < \sigma_m \leq n$ then set e'_{σ} to be the set of all orthogonal *m*-frames (e_1, \ldots, e_m) such that $e_i \in H^{\sigma_i}$. Show that any *m*-plane $\in e_{\sigma}$ has a unique basis $\in e'_{\sigma}$.

2. Our next task will be to show that the closure \bar{e}'_{σ} in the space of all orthogonal *m*-frames (which, in turn, inherits a topology from the space of all $m \times n$ matrices) is homeomorphic to the closed unit disk of dimension $d(\sigma) = (\sigma_1 - 1) + (\sigma_2 - 2) + \cdots + (\sigma_m - m)$. We proceed by induction on *m*. Show that the statement is true in the base case m = 1.

3. Assuming the statement from the previous question is true for m show it holds for m + 1. One could proceed as follows. Take a σ as above and a $\sigma_{m+1} > \sigma_m$. Let $v_i, i = 1, \ldots, m$ be the σ_i -th vector of the standard basis of \mathbb{R}^n . For each frame $w = (w_1, \ldots, w_m) \in \bar{e}'_{\sigma}$ construct using question 4 from the previous problem sheet, discussion part, a rotation T_w that takes each v_i to w_i and depends continuously on w. Let D be the subset of $\bar{H}^{\sigma_{m+1}}$ formed all unit vectors u that are orthogonal to each v_1, \ldots, v_m . Show that D is homeomorphic to $D^{\sigma_{m+1}-m-1}$ and that the maps

$$(w_1, \dots, w_m, u) \mapsto (w_1, \dots, w_m, T_w u), (w_1, \dots, w_m, w_{m+1}) \mapsto (w_1, \dots, w_m, T_w^{-1} w_{m+1})$$

 $\bar{e}'_{\sigma} \times D \to \bar{e}'_{\sigma,\sigma_{m+1}}$ and $\bar{e}'_{\sigma,\sigma_{m+1}} \to \bar{e}'_{\sigma} \times D$ respectively are homeomorphisms inverse to one another where $\bar{e}'_{\sigma,\sigma_{m+1}}$ is the closure of $e'_{(\sigma_1,\ldots,\sigma_m,\sigma_{m+1})}$.

4. Show that the natural map from *m*-frames to *m*-planes takes an element of $\bar{e}'_{\sigma} \setminus e'_{\sigma}$ to an element of $\bar{e}_{\sigma} \setminus e_{\sigma}$ and deduce that e_{σ} 's form a cell decomposition of $G_m(\mathbb{R}^n)$.