HSE/Math in Moscow 2013-2014// Topology 1 // Problem sheet 11

Groups

Question 1. Let H be a subgroup of a group G. Show that the following statements are equivalent.

(i) H is normal.

(ii) The left and right cosets of H coincide.

(iii) For each $g \in G$ and $h \in H$ we have $ghg^{-1} \in H$.

For a normal subgroup $H \subset G$ we can define a binary operation on the set of all (left or right) cosets: we set $g_1 H \cdot g_2 H = g_1 g_2 H$.

Question 2. (a) Show that this operation is well defined, e.g., if one takes $g'_1 \in g_1H$ and $g'_2 \in g_2H$ then $g'_1g'_2$ will be in g_1g_2H .

(b) Show by example that if H is not normal, then the conclusion of part (a) need not hold.

(c) Show that, assuming again that H is normal, the set of all H-cosets is itself a group under the above operation.

Let G, H be groups. A group homomorphism from G to H is a map $f: G \to H$ such that $f(g_1g_2) = f(g_1)f(g_2)$ for all $g_1, g_2 \in G$. A bijective group homomorphism is called an *isomorphism*. If there is an isomorphism $G \to H$ we say that G and H are *isomorphic* and we write $G \cong H$.

Question 3. Let $f: G \to H$ be a group homomorphism

(a) Show that if f is an isomorphism, then so is f^{-1} . So phenomena like continuous bijections whose inverses are not continuous, which cause quite a bit of trouble in topology, are non-existent in group theory.

(b) Show that the kernel ker $f = f^{-1}(e)$ of f is a normal subgroup and construct, provided f is surjective, an isomorphism $G/\ker f \cong H$.

One way to rephrase the statement of part (b) would be to say that the homomorphic image of a group is isomorphic to the quotient by the kernel. While this statement is more or less obvious, and its proof straightforward, it may sound a bit esoteric to those who haven't studied group theory.

Let A be a set. The free group F(A) on the elements of A is the set of all finite sequences $a_1^{\varepsilon_1}a_2^{\varepsilon_2}\cdots a_n^{\varepsilon_n}$ where $a_1,\ldots,a_n \in A$ and $\varepsilon_1,\ldots,\varepsilon_n \in \{\pm 1\}$, quotiented by the equivalence relation generated by $s_1aa^{-1}s_2 = s_1s_2$ and $s_1a^{-1}as_2 = s_1s_2$ where $a \in A$ and s_1, s_2 are sequences as above. We allow the empty sequence as well and we denote it e. We write a_i instead of a_i^1 and we abbreviate several consecutive occurrences of a_i , resp. a_i^{-1} as a_i^k , resp. a_i^{-k} .

Question 3. (a) Show that F(A) is indeed a group with e as the unit element.

(b) We say that a subset S of a group G generates G iff the smallest subgroup of G containing S is G itself. If this is the case, show that any map of sets $A \to S$ extends to a group homomorphism. Deduce that if $f: A \to S$ is a surjective map then there if a surjective group homomorphism $\overline{f}: F(A) \to G$.

The normal closure $\langle S^G \rangle$ of a subset S of a group G is the smallest normal subgroup of G that contains S. This may coincide with the subgroup generated by S but usually does not. If we are given a surjective homomorphism $f: F(A) \to G$ and a subset $S \subset F(A)$ such that $\langle S^G \rangle = \ker f$ then we say that G is generated by the elements of A, subject to the set S of relations and we write $G \cong \langle A \mid S \rangle$. Sometimes one lists the elements of A and S explicitly. E.g., if $A = \{a, b, c\}$ and $S = \{b^2 a b^{-1} a^{-1}, c^2 b c^{-1} b^{-1}, a^2 c a^{-1} c^{-1}, a b^{48} c^{-5151}\}$ then one writes

$$G \cong \langle a, b, c \mid b^2 a b^{-1} a^{-1}, c^2 b c^{-1} b^{-1}, a^2 c a^{-1} c^{-1}, a b^{48} c^{-5151} \rangle$$

Note however that a group may have very different presentations. For example, the above presentation in fact gives the trivial group. There is no algorithm that tells us, given finite sets A_1, A_2 and S_1, S_2 as above, whether the groups $\langle A_1 | S_1 \rangle$ and $\langle A_2 | S_2 \rangle$ are isomorphic. So the fundamental group is a powerful but often intractable invariant of topological spaces. It knows a lot but persuading it to share this information can be tricky.

One thing one can do is to abelianise the fundamental group. This normally results in a huge loss of information but nevertheless this trick suffices e.g. to tell apart surfaces without boundary. The *commutator subgroup* of a group G is the subgroup $G' \subset G$ generated by all commutators $[a, b] = aba^{-1}b^{-1}$ where $a, b \in G$.

Question 4. (a) Show that G' is indeed a subgroup of G and that it is normal. The quotient G/G' is called the *abelianisation* of G. Show that G/G' is *abelian*, i.e. that gh = hg for all $g, h \in G/G'$. Note that every subgroup of an abelian group is normal.

(b) Suppose $G = \langle a_1, \ldots, a_n \mid w_1, \ldots, w_k \rangle$. For each w_i form an element $v_i = (v_i^1, \ldots, v_i^n) \in \mathbb{Z}^n$ as follows: we set v_i^j to be the sum of the degrees of all occurrences of a_j in w_i . E.g., if n = 2, then $w = a_1^{23} a_2^{-15} a_1^{48} a_2 a_1^{10}$ would give (81, -14), while $w = a_1^{100} a_2^{-100} a_1^{-100} a_2^{100}$ would give (0, 0). Show that G/G' is isomorphic to the quotient

$$\mathbb{Z}^n/\langle v_1,\ldots,v_k\rangle.$$

The fundamental groups

Question 5. (a) Show that if a topological space X is path connected, then for every two elements $x_1, x_2 \in X$ we have an isomorphism $\pi_1(X, x_1) \cong \pi_1(X, x_2)$.

(b) Show that if two spaces X, Y are homotopy equivalent and path connected, then there is an isomorphism $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$ for any choice of $x_0 \in X, y_0 \in Y$.

The fundamental groups of surfaces

In the lectures we have shown that if S is an orientable surface of genus g then

 $\pi_1(S) \cong \langle a_1, b_1, \dots, a_q, b_q \mid [a_1, b_1] \cdots [a_q, b_q] \rangle$

and if S is a non-orientable surface of genus g then

$$\pi_1(S) \cong \langle a_1, \dots a_g \mid a_1^2 \cdots a_q^2 \rangle.$$

We will need another notion from group theory. If G, H are groups, then their cartesian product $G \times H$ is again a group under componentwise operation: $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$. If both the groups are abelian it is customary to denote the resulting group as $G \oplus H$. The group \mathbb{Z}^n of all *n*-tuples of integers under addition is nothing but $\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (*n* factors).

Question 6. (a) Show that $\mathbb{Z}^n \not\cong \mathbb{Z}^m$ unless n = m. [A warning is perhaps in order: although we do not prove it here, \mathbb{R}^n and \mathbb{R}^m are isomorphic as groups (but, of course, not as real vector spaces).]

(b) Show that $\mathbb{Z}^n/\langle (2,2,\ldots,2)\rangle$ is isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}^{n-1}$. Deduce that for all $m, n \ge 1$

$$\mathbb{Z}^n/\langle (2,2,\ldots,2)\rangle \not\cong \mathbb{Z}^n$$

and that for $m \neq n, m, n \geq 1$

$$\mathbb{Z}^n/\langle (2,2,\ldots,2)\rangle \cong \mathbb{Z}^m/\langle (2,2,\ldots,2)\rangle.$$

[Hint: show that if G is an abelian group then the elements of finite order form a subgroup; this subgroup is called the *torsion subgroup* of G and is denoted G_T ; show that if abelian subgroups G_1 and G_2 are isomorphic then $G_{1T} \cong G_{2T}$ and $G_1/G_{1T} \cong G_2/G_{2T}$. Note however that for non-abelian groups the elements of finite order may not form a subgroup.]

(c) Using parts (a) and (b) and question 4 show that if surfaces S_1, S_2 without boundary are homotopy equivalent, then either both are orientable, or both are non-orientable, and in both cases the genera of the surfaces coincide.

So we have finally shown (albeit in a roundabout way) that for surfaces without boundary the genus and orientability are topological (and even homotopy) invariants.

Problems for discussion

Here we derive the Wirtinger presentation of the fundamental group of a link complement. First, recall that if G, H are groups the *free product* G * H is the set of all seqences $x_1 * \cdots x_k$ where x_i belong to G or H, up to the equivalence relation generated by $s_1 * x * y * s_2 = s_1 * xy * s_2$ where s_1, s_2 are arbitrary sequences and x, y are both in G or both in H. Note that a free group on n generators is just the free product of n copies of \mathbb{Z} . Second, if K is a third group equipped with group homomorphisms $f: K \to G, g: K \to H$ then the *cofibre product* $G *_K H$ of G and H over K is the quotient of G * H by the normal closure of the set $f(x) * g(x), x \in K$.

It can be shown that if $\langle A_1 | S_1 \rangle$ is a presentation for G and $\langle A_2 | S_2 \rangle$ is a presentation for H, then $\langle A_1 \cup A_2 | S_2 \cup S_2 \cup S \rangle$ is a presentation for $G *_K H$ where S is formed by all words $f(c_i)g(c_i)^{-1}$. Here c_i is an elemenent of some system of generators of K and $f(c_i), g(c_i)$ are its images under f and g, written in terms of the generators from A_1 , respectively A_2 . For more details see A. Hatcher, Algebraic Topology, pp. 40-43.

Van Kampen's theorem says that if a path connected CW-complex X is the union of its path connected subcomplexes X_1, X_2 such that $X_2 \cap X_2$ is path connected, then for all $x_0 \in X_1 \cap X_2$ we have $\pi_1(X, x_0) \cong \pi_1(X_1, x_0) *_{\pi_1(X_1 \cap X_2, x_0)} \pi_1(X_2, x_0)$. This less general than the version in Hatcher's book, but for our purposes it'll do.

Let L be a link in \mathbb{R}^3 . We equip \mathbb{R}^3 with coordinates x, y, z and then place the link so that most of it, apart from a finite number of short arcs, lies in the plane z = 0 (those arcs correspond to the overcrossings of the link diagram obtained by projecting to z = 0). We assume L to be oriented. Applying a planar isotopy we may deform the diagram of L so that all overcrossings are on the same line and all overcrossing strands look in the same direction.

By cutting everything using the plane $z = \varepsilon > 0$ represent $\mathbb{R}^3 \setminus L$ as a union $X_1 \cup X_2$ where X_1 is a half-space with some number of short tunnels drilled in it (those correspond to the overcrossing strands), X_2 is a half-space with some number of long tunnels drilled in it (those correspond to the rest of the link) and $X_1 \cap X_2$ is \mathbb{R}^2 with some number of non-intersecting holes, all on the same line l. Suppose the crossings are numbered from 1 to n. Choose a point $x_0 \in (X_1 \cap X_2) \setminus l$. For crossing number i define loops γ_i^+, γ_i^- in $X_1 \cap X_2$ based at x_0 , as shown on the blackboard (if we move along a component of L in the positive direction then, as we cross over at i-th crossing the loops go counterclockwise).

1. Show that the classes of these loops freely generate $\pi_1(X_1 \cap X_2, x_0)$.

2. Show that X_1 is homotopy equivalent to a wedge of circles. Show that $[\gamma_i^+] = [\gamma_i^-]$ in $\pi_1(X_1, x_0)$ and that either of the sets $\{[\gamma_i^+]\}$ and $\{[\gamma_i^-]\}$ freely generates $\pi_1(X_1, x_0)$.

3. Show that X_2 is also homotopy equivalent to a wedge of circles and that its π_1 is freely generated by either of the sets $\{[\gamma_i^+]\}$ and $\{[\gamma_i^-]\}$.

4. Express each $[\gamma_i^-]$ (regarded as an element of $\pi_1(X_2, x_0)$) in terms of $[\gamma_i^+]$'s and derive a presentation of $\pi_1(\mathbb{R}^3 \setminus L, x_0)$.