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Groups

Question 1. Let H be a subgroup of a group G. Show that the following statements are equivalent.
(i) H is normal.
(ii) The left and right cosets of H coincide.
(iii) For each g ∈ G and h ∈ H we have ghg−1 ∈ H.

For a normal subgroup H ⊂ G we can define a binary operation on the set of all (left or right) cosets: we set g1H · g2H =
g1g2H.

Question 2. (a) Show that this operation is well defined, e.g., if one takes g′1 ∈ g1H and g′2 ∈ g2H then g′1g
′

2 will be in
g1g2H.

(b) Show by example that if H is not normal, then the conclusion of part (a) need not hold.
(c) Show that, assuming again that H is normal, the set of all H-cosets is itself a group under the above operation.

Let G,H be groups. A group homomorphism from G to H is a map f : G → H such that f(g1g2) = f(g1)f(g2) for all
g1, g2 ∈ G. A bijective group homomorphism is called an isomorphism. If there is an isomorphism G → H we say that G
and H are isomorphic and we write G ∼= H.

Question 3. Let f : G → H be a group homomorphism
(a) Show that if f is an isomorphism, then so is f−1. So phenomena like continuous bijections whose inverses are not

continuous, which cause quite a bit of trouble in topology, are non-existent in group theory.
(b) Show that the kernel ker f = f−1(e) of f is a normal subgroup and construct, provided f is surjective, an isomorphism

G/ ker f ∼= H.
One way to rephrase the statement of part (b) would be to say that the homomorphic image of a group is isomorphic to

the quotient by the kernel. While this statement is more or less obvious, and its proof straightforward, it may sound a bit
esoteric to those who haven’t studied group theory.

Let A be a set. The free group F (A) on the elements of A is the set of all finite sequences aε11 aε22 · · · aεnn where a1, . . . , an ∈ A
and ε1, . . . , εn ∈ {±1}, quotiented by the equivalence relation generated by s1aa

−1s2 = s1s2 and s1a
−1as2 = s1s2 where

a ∈ A and s1, s2 are sequences as above. We allow the empty sequence as well and we denote it e. We write ai instead of a1i
and we abbreviate several consecutive occurrences of ai, resp. a

−1
i as aki , resp. a

−k
i .

Question 3. (a) Show that F (A) is indeed a group with e as the unit element.
(b) We say that a subset S of a group G generates G iff the smallest subgroup of G containing S is G itself. If this is the

case, show that any map of sets A → S extends to a group homomorphism. Deduce that if f : A → S is a surjective map
then there if a surjective group homomorphism f̄ : F (A) → G.

The normal closure 〈SG〉 of a subset S of a group G is the smallest normal subgroup of G that contains S. This may
coincide with the subgroup generated by S but usually does not. If we are given a surjective homomorphism f : F (A) → G
and a subset S ⊂ F (A) such that 〈SG〉 = ker f then we say that G is generated by the elements of A, subject to the set
S of relations and we write G ∼= 〈A | S〉. Sometimes one lists the elements of A and S explicitly. E.g., if A = {a, b, c} and
S = {b2ab−1a−1, c2bc−1b−1, a2ca−1c−1, ab48c−5151} then one writes

G ∼= 〈a, b, c | b2ab−1a−1, c2bc−1b−1, a2ca−1c−1, ab48c−5151〉.

Note however that a group may have very different presentations. For example, the above presentation in fact gives the
trivial group. There is no algorithm that tells us, given finite sets A1, A2 and S1, S2 as above, whether the groups 〈A1 | S1〉
and 〈A2 | S2〉 are isomorphic. So the fundamental group is a powerful but often intractable invariant of topological spaces.
It knows a lot but persuading it to share this information can be tricky.

One thing one can do is to abelianise the fundamental group. This normally results in a huge loss of information but
nevertheless this trick suffices e.g. to tell apart surfaces without boundary. The commutator subgroup of a group G is the
subgroup G′ ⊂ G generated by all commutators [a, b] = aba−1b−1 where a, b ∈ G.

Question 4. (a) Show that G′ is indeed a subgroup of G and that it is normal. The quotient G/G′ is called the
abelianisation of G. Show that G/G′ is abelian, i.e. that gh = hg for all g, h ∈ G/G′. Note that every subgroup of an abelian
group is normal.

(b) Suppose G = 〈a1, . . . , an | w1, . . . , wk〉. For each wi form an element vi = (v1i , . . . , v
n
i ) ∈ Z

n as follows: we set vji to
be the sum of the degrees of all occurrences of aj in wi. E.g., if n = 2, then w = a231 a−15

2 a481 a2a
10
1 would give (81,−14), while

w = a1001 a−100
2 a−100

1 a1002 would give (0, 0). Show that G/G′ is isomorphic to the quotient

Z
n/〈v1, . . . , vk〉.
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The fundamental groups

Question 5. (a) Show that if a topological space X is path connected, then for every two elements x1, x2 ∈ X we have
an isomorphism π1(X,x1) ∼= π1(X,x2).

(b) Show that if two spaces X,Y are homotopy equivalent and path connected, then there is an isomorphism π1(X,x0) ∼=
π1(Y, y0) for any choice of x0 ∈ X, y0 ∈ Y .

The fundamental groups of surfaces

In the lectures we have shown that if S is an orientable surface of genus g then

π1(S) ∼= 〈a1, b1, . . . , ag, bg | [a1, b1] · · · · · [ag, bg]〉

and if S is a non-orientable surface of genus g then

π1(S) ∼= 〈a1, . . . ag | a21 · · · · · a
2
g〉.

We will need another notion from group theory. If G,H are groups, then their cartesian product G×H is again a group
under componentwise operation: (g1, h1) · (g2, h2) = (g1g2, h1h2). If both the groups are abelian it is customary to denote
the resulting group as G⊕H. The group Z

n of all n-tuples of integers under addition is nothing but Z⊕ · · · ⊕Z (n factors).
Question 6. (a) Show that Zn 6∼= Z

m unless n = m. [A warning is perhaps in order: although we do not prove it here,
R

n and R
m are isomorphic as groups (but, of course, not as real vector spaces).]

(b) Show that Zn/〈(2, 2, . . . , 2)〉 is isomorphic to Z/2⊕ Z
n−1. Deduce that for all m,n ≥ 1

Z
n/〈(2, 2, . . . , 2)〉 6∼= Z

m

and that for m 6= n,m, n ≥ 1
Z
n/〈(2, 2, . . . , 2)〉 6∼= Z

m/〈(2, 2, . . . , 2)〉.

[Hint: show that if G is an abelian group then the elements of finite order form a subgroup; this subgroup is called the
torsion subgoup of G and is denoted GT ; show that if abelian subgroups G1 and G2 are isomorphic then G1T

∼= G2T and
G1/G1T

∼= G2/G2T . Note however that for non-abelian groups the elements of finite order may not form a subgroup.]
(c) Using parts (a) and (b) and question 4 show that if surfaces S1, S2 without boundary are homotopy equivalent, then

either both are orientable, or both are non-orientable, and in both cases the genera of the surfaces coincide.
So we have finally shown (albeit in a roundabout way) that for surfaces without boundary the genus and orientability

are topological (and even homotopy) invariants.
Problems for discussion

Here we derive the Wirtinger presentation of the fundamental group of a link complement. First, recall that if G,H
are groups the free product G ∗ H is the set of all seqences x1 ∗ · · ·xk where xi belong to G or H, up to the equivalence
relation generated by s1 ∗ x ∗ y ∗ s2 = s1 ∗ xy ∗ s2 where s1, s2 are arbitrary sequences and x, y are both in G or both in H.
Note that a free group on n generators is just the free product of n copies of Z. Second, if K is a third group equipped with
group homomorphisms f : K → G, g : K → H then the cofibre product G ∗K H of G and H over K is the quotient of G ∗H
by the normal closure of the set f(x) ∗ g(x), x ∈ K.

It can be shown that if 〈A1 | S1〉 is a presentation for G and 〈A2 | S2〉 is a presentation for H, then 〈A1∪A2 | S2∪S2∪S〉 is
a presentation for G ∗K H where S is formed by all words f(ci)g(ci)

−1. Here ci is an elemenent of some system of generators
of K and f(ci), g(ci) are its images under f and g, written in terms of the generators from A1, respectively A2. For more
details see A. Hatcher, Algebraic Topology, pp. 40-43.

Van Kampen’s theorem says that if a path connected CW-complex X is the union of its path connected subcomplexes
X1, X2 such thatX2∩X2 is path connected, then for all x0 ∈ X1∩X2 we have π1(X,x0) ∼= π1(X1, x0)∗π1(X1∩X2,x0)π1(X2, x0).
This less general than the version in Hatcher’s book, but for our purposes it’ll do.

Let L be a link in R
3. We equip R

3 with coordinates x, y, z and then place the link so that most of it, apart from a finite
number of short arcs, lies in the plane z = 0 (those arcs correspond to the overcrossings of the link diagram obtained by
projecting to z = 0). We assume L to be oriented. Applying a planar isotopy we may deform the diagram of L so that all
overcrossings are on the same line and all overcrossing strands look in the same direction.

By cutting everything using the plane z = ε > 0 represent R3 \L as a union X1 ∪X2 where X1 is a half-space with some
number of short tunnels drilled in it (those correspond to the overcrossing strands), X2 is a half-space with some number of
long tunnels drilled in it (those correspond to the rest of the link) and X1 ∩X2 is R2 with some number of non-intersecting
holes, all on the same line l. Suppose the crossings are numbered from 1 to n. Choose a point x0 ∈ (X1 ∩ X2) \ l. For
crossing number i define loops γ+

i , γ−

i in X1 ∩X2 based at x0, as shown on the blackboard (if we move along a component
of L in the positive direction then, as we cross over at i-th crossing the loops go counterclockwise).

1. Show that the classes of these loops freely generate π1(X1 ∩X2, x0).
2. Show that X1 is homotopy equivalent to a wedge of circles. Show that [γ+

i ] = [γ−

i ] in π1(X1, x0) and that either of
the sets {[γ+

i ]} and {[γ−

i ]} freely generates π1(X1, x0).
3. Show that X2 is also homotopy equivalent to a wedge of circles and that its π1 is freely generated by either of the sets

{[γ+
i ]} and {[γ−

i ]}.
4. Express each [γ−

i ] (regarded as an element of π1(X2, x0)) in terms of [γ+
i ]’s and derive a presentation of π1(R

3 \L, x0).
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