# HSE/Math in Moscow 2013-2014// Topology 1 // Problem sheet 11 

## Groups

Question 1. Let $H$ be a subgroup of a group $G$. Show that the following statements are equivalent.
(i) $H$ is normal.
(ii) The left and right cosets of $H$ coincide.
(iii) For each $g \in G$ and $h \in H$ we have $g h g^{-1} \in H$.

For a normal subgroup $H \subset G$ we can define a binary operation on the set of all (left or right) cosets: we set $g_{1} H \cdot g_{2} H=$ $g_{1} g_{2} H$.

Question 2. (a) Show that this operation is well defined, e.g., if one takes $g_{1}^{\prime} \in g_{1} H$ and $g_{2}^{\prime} \in g_{2} H$ then $g_{1}^{\prime} g_{2}^{\prime}$ will be in $g_{1} g_{2} H$.
(b) Show by example that if $H$ is not normal, then the conclusion of part (a) need not hold.
(c) Show that, assuming again that $H$ is normal, the set of all $H$-cosets is itself a group under the above operation.

Let $G, H$ be groups. A group homomorphism from $G$ to $H$ is a map $f: G \rightarrow H$ such that $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$. A bijective group homomorphism is called an isomorphism. If there is an isomorphism $G \rightarrow H$ we say that $G$ and $H$ are isomorphic and we write $G \cong H$.

Question 3. Let $f: G \rightarrow H$ be a group homomorphism
(a) Show that if $f$ is an isomorphism, then so is $f^{-1}$. So phenomena like continuous bijections whose inverses are not continuous, which cause quite a bit of trouble in topology, are non-existent in group theory.
(b) Show that the kernel ker $f=f^{-1}(e)$ of $f$ is a normal subgroup and construct, provided $f$ is surjective, an isomorphism $G / \operatorname{ker} f \cong H$.

One way to rephrase the statement of part (b) would be to say that the homomorphic image of a group is isomorphic to the quotient by the kernel. While this statement is more or less obvious, and its proof straightforward, it may sound a bit esoteric to those who haven't studied group theory.

Let $A$ be a set. The free group $F(A)$ on the elements of $A$ is the set of all finite sequences $a_{1}^{\varepsilon_{1}} a_{2}^{\varepsilon_{2}} \cdots a_{n}^{\varepsilon_{n}}$ where $a_{1}, \ldots, a_{n} \in A$ and $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}$, quotiented by the equivalence relation generated by $s_{1} a a^{-1} s_{2}=s_{1} s_{2}$ and $s_{1} a^{-1} a s_{2}=s_{1} s_{2}$ where $a \in A$ and $s_{1}, s_{2}$ are sequences as above. We allow the empty sequence as well and we denote it $e$. We write $a_{i}$ instead of $a_{i}^{1}$ and we abbreviate several consecutive occurrences of $a_{i}$, resp. $a_{i}^{-1}$ as $a_{i}^{k}$, resp. $a_{i}^{-k}$.

Question 3. (a) Show that $F(A)$ is indeed a group with $e$ as the unit element.
(b) We say that a subset $S$ of a group $G$ generates $G$ iff the smallest subgroup of $G$ containing $S$ is $G$ itself. If this is the case, show that any map of sets $A \rightarrow S$ extends to a group homomorphism. Deduce that if $f: A \rightarrow S$ is a surjective map then there if a surjective group homomorphism $\bar{f}: F(A) \rightarrow G$.

The normal closure $\left\langle S^{G}\right\rangle$ of a subset $S$ of a group $G$ is the smallest normal subgroup of $G$ that contains $S$. This may coincide with the subgroup generated by $S$ but usually does not. If we are given a surjective homomorphism $f: F(A) \rightarrow G$ and a subset $S \subset F(A)$ such that $\left\langle S^{G}\right\rangle=\operatorname{ker} f$ then we say that $G$ is generated by the elements of $A$, subject to the set $S$ of relations and we write $G \cong\langle A \mid S\rangle$. Sometimes one lists the elements of $A$ and $S$ explicitly. E.g., if $A=\{a, b, c\}$ and $S=\left\{b^{2} a b^{-1} a^{-1}, c^{2} b c^{-1} b^{-1}, a^{2} c a^{-1} c^{-1}, a b^{48} c^{-5151}\right\}$ then one writes

$$
G \cong\left\langle a, b, c \mid b^{2} a b^{-1} a^{-1}, c^{2} b c^{-1} b^{-1}, a^{2} c a^{-1} c^{-1}, a b^{48} c^{-5151}\right\rangle .
$$

Note however that a group may have very different presentations. For example, the above presentation in fact gives the trivial group. There is no algorithm that tells us, given finite sets $A_{1}, A_{2}$ and $S_{1}, S_{2}$ as above, whether the groups $\left\langle A_{1} \mid S_{1}\right\rangle$ and $\left\langle A_{2} \mid S_{2}\right\rangle$ are isomorphic. So the fundamental group is a powerful but often intractable invariant of topological spaces. It knows a lot but persuading it to share this information can be tricky.

One thing one can do is to abelianise the fundamental group. This normally results in a huge loss of information but nevertheless this trick suffices e.g. to tell apart surfaces without boundary. The commutator subgroup of a group $G$ is the subgroup $G^{\prime} \subset G$ generated by all commutators $[a, b]=a b a^{-1} b^{-1}$ where $a, b \in G$.

Question 4. (a) Show that $G^{\prime}$ is indeed a subgroup of $G$ and that it is normal. The quotient $G / G^{\prime}$ is called the abelianisation of $G$. Show that $G / G^{\prime}$ is abelian, i.e. that $g h=h g$ for all $g, h \in G / G^{\prime}$. Note that every subgroup of an abelian group is normal.
(b) Suppose $G=\left\langle a_{1}, \ldots, a_{n} \mid w_{1}, \ldots, w_{k}\right\rangle$. For each $w_{i}$ form an element $v_{i}=\left(v_{i}^{1}, \ldots, v_{i}^{n}\right) \in \mathbb{Z}^{n}$ as follows: we set $v_{i}^{j}$ to be the sum of the degrees of all occurrences of $a_{j}$ in $w_{i}$. E.g., if $n=2$, then $w=a_{1}^{23} a_{2}^{-15} a_{1}^{48} a_{2} a_{1}^{10}$ would give ( $81,-14$ ), while $w=a_{1}^{100} a_{2}^{-100} a_{1}^{-100} a_{2}^{100}$ would give $(0,0)$. Show that $G / G^{\prime}$ is isomorphic to the quotient

$$
\mathbb{Z}^{n} /\left\langle v_{1}, \ldots, v_{k}\right\rangle
$$

## The fundamental groups

Question 5. (a) Show that if a topological space $X$ is path connected, then for every two elements $x_{1}, x_{2} \in X$ we have an isomorphism $\pi_{1}\left(X, x_{1}\right) \cong \pi_{1}\left(X, x_{2}\right)$.
(b) Show that if two spaces $X, Y$ are homotopy equivalent and path connected, then there is an isomorphism $\pi_{1}\left(X, x_{0}\right) \cong$ $\pi_{1}\left(Y, y_{0}\right)$ for any choice of $x_{0} \in X, y_{0} \in Y$.

## The fundamental groups of surfaces

In the lectures we have shown that if $S$ is an orientable surface of genus $g$ then

$$
\pi_{1}(S) \cong\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right\rangle
$$

and if $S$ is a non-orientable surface of genus $g$ then

$$
\pi_{1}(S) \cong\left\langle a_{1}, \ldots a_{g} \mid a_{1}^{2} \cdots \cdot a_{g}^{2}\right\rangle
$$

We will need another notion from group theory. If $G, H$ are groups, then their cartesian product $G \times H$ is again a group under componentwise operation: $\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)$. If both the groups are abelian it is customary to denote the resulting group as $G \oplus H$. The group $\mathbb{Z}^{n}$ of all $n$-tuples of integers under addition is nothing but $\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ ( $n$ factors).

Question 6. (a) Show that $\mathbb{Z}^{n} \neq \mathbb{Z}^{m}$ unless $n=m$. [A warning is perhaps in order: although we do not prove it here, $\mathbb{R}^{n}$ and $\mathbb{R}^{m}$ are isomorphic as groups (but, of course, not as real vector spaces).]
(b) Show that $\mathbb{Z}^{n} /\langle(2,2, \ldots, 2)\rangle$ is isomorphic to $\mathbb{Z} / 2 \oplus \mathbb{Z}^{n-1}$. Deduce that for all $m, n \geq 1$

$$
\mathbb{Z}^{n} /\langle(2,2, \ldots, 2)\rangle \not \approx \mathbb{Z}^{m}
$$

and that for $m \neq n, m, n \geq 1$

$$
\mathbb{Z}^{n} /\langle(2,2, \ldots, 2)\rangle \not \approx \mathbb{Z}^{m} /\langle(2,2, \ldots, 2)\rangle
$$

[Hint: show that if $G$ is an abelian group then the elements of finite order form a subgroup; this subgroup is called the torsion subgoup of $G$ and is denoted $G_{T}$; show that if abelian subgroups $G_{1}$ and $G_{2}$ are isomorphic then $G_{1 T} \cong G_{2 T}$ and $G_{1} / G_{1 T} \cong G_{2} / G_{2 T}$. Note however that for non-abelian groups the elements of finite order may not form a subgroup.]
(c) Using parts (a) and (b) and question 4 show that if surfaces $S_{1}, S_{2}$ without boundary are homotopy equivalent, then either both are orientable, or both are non-orientable, and in both cases the genera of the surfaces coincide.

So we have finally shown (albeit in a roundabout way) that for surfaces without boundary the genus and orientability are topological (and even homotopy) invariants.

## Problems for discussion

Here we derive the Wirtinger presentation of the fundamental group of a link complement. First, recall that if $G, H$ are groups the free product $G * H$ is the set of all seqences $x_{1} * \cdots x_{k}$ where $x_{i}$ belong to $G$ or $H$, up to the equivalence relation generated by $s_{1} * x * y * s_{2}=s_{1} * x y * s_{2}$ where $s_{1}, s_{2}$ are arbitrary sequences and $x, y$ are both in $G$ or both in $H$. Note that a free group on $n$ generators is just the free product of $n$ copies of $\mathbb{Z}$. Second, if $K$ is a third group equipped with group homomorphisms $f: K \rightarrow G, g: K \rightarrow H$ then the cofibre product $G *_{K} H$ of $G$ and $H$ over $K$ is the quotient of $G * H$ by the normal closure of the set $f(x) * g(x), x \in K$.

It can be shown that if $\left\langle A_{1} \mid S_{1}\right\rangle$ is a presentation for $G$ and $\left\langle A_{2} \mid S_{2}\right\rangle$ is a presentation for $H$, then $\left\langle A_{1} \cup A_{2} \mid S_{2} \cup S_{2} \cup S\right\rangle$ is a presentation for $G *_{K} H$ where $S$ is formed by all words $f\left(c_{i}\right) g\left(c_{i}\right)^{-1}$. Here $c_{i}$ is an elemenent of some system of generators of $K$ and $f\left(c_{i}\right), g\left(c_{i}\right)$ are its images under $f$ and $g$, written in terms of the generators from $A_{1}$, respectively $A_{2}$. For more details see A. Hatcher, Algebraic Topology, pp. 40-43.

Van Kampen's theorem says that if a path connected CW-complex $X$ is the union of its path connected subcomplexes $X_{1}, X_{2}$ such that $X_{2} \cap X_{2}$ is path connected, then for all $x_{0} \in X_{1} \cap X_{2}$ we have $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X_{1}, x_{0}\right) *_{\pi_{1}\left(X_{1} \cap X_{2}, x_{0}\right)} \pi_{1}\left(X_{2}, x_{0}\right)$. This less general than the version in Hatcher's book, but for our purposes it'll do.

Let $L$ be a link in $\mathbb{R}^{3}$. We equip $\mathbb{R}^{3}$ with coordinates $x, y, z$ and then place the link so that most of it, apart from a finite number of short arcs, lies in the plane $z=0$ (those arcs correspond to the overcrossings of the link diagram obtained by projecting to $z=0$ ). We assume $L$ to be oriented. Applying a planar isotopy we may deform the diagram of $L$ so that all overcrossings are on the same line and all overcrossing strands look in the same direction.

By cutting everything using the plane $z=\varepsilon>0$ represent $\mathbb{R}^{3} \backslash L$ as a union $X_{1} \cup X_{2}$ where $X_{1}$ is a half-space with some number of short tunnels drilled in it (those correspond to the overcrossing strands), $X_{2}$ is a half-space with some number of long tunnels drilled in it (those correspond to the rest of the link) and $X_{1} \cap X_{2}$ is $\mathbb{R}^{2}$ with some number of non-intersecting holes, all on the same line $l$. Suppose the crossings are numbered from 1 to $n$. Choose a point $x_{0} \in\left(X_{1} \cap X_{2}\right) \backslash l$. For crossing number $i$ define loops $\gamma_{i}^{+}, \gamma_{i}^{-}$in $X_{1} \cap X_{2}$ based at $x_{0}$, as shown on the blackboard (if we move along a component of $L$ in the positive direction then, as we cross over at $i$-th crossing the loops go counterclockwise).

1. Show that the classes of these loops freely generate $\pi_{1}\left(X_{1} \cap X_{2}, x_{0}\right)$.
2. Show that $X_{1}$ is homotopy equivalent to a wedge of circles. Show that $\left[\gamma_{i}^{+}\right]=\left[\gamma_{i}^{-}\right]$in $\pi_{1}\left(X_{1}, x_{0}\right)$ and that either of the sets $\left\{\left[\gamma_{i}^{+}\right]\right\}$and $\left\{\left[\gamma_{i}^{-}\right]\right\}$freely generates $\pi_{1}\left(X_{1}, x_{0}\right)$.
3. Show that $X_{2}$ is also homotopy equivalent to a wedge of circles and that its $\pi_{1}$ is freely generated by either of the sets $\left\{\left[\gamma_{i}^{+}\right]\right\}$and $\left\{\left[\gamma_{i}^{-}\right]\right\}$.
4. Express each $\left[\gamma_{i}^{-}\right]$(regarded as an element of $\pi_{1}\left(X_{2}, x_{0}\right)$ ) in terms of $\left[\gamma_{i}^{+}\right]$'s and derive a presentation of $\pi_{1}\left(\mathbb{R}^{3} \backslash L, x_{0}\right)$.
