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Group actions

If G is a group and X is a set then a left action of G on X is a map G×X → X, (g, x) 7→ g ·x such that g1 ·(g2 ·x) = (g1g2)·x
for all g1, g2 ∈ G, x ∈ X. Similarly, a right action of G on X is a map X×G→ X, (x, g) 7→ x·g such that (x·g1)·g2 = x·(g1g2)
for all g1, g2 ∈ G, x ∈ X. In the sequel we’ll often be omitting the dots and we’ll be simply writing gx instead of g · x, when
this is unlikely to cause confusion. If a (left or right) action of G on X is given, we say that X is a (left or right) G-set

Given a left action as above and an x ∈ X we define the orbit G(x) of x and the stabiliser Gx of x as follows G(x) =
{gx | g ∈ G}, Gx = {g ∈ G | gx = x}. Orbit and stabilisers for right actions are defined in a similar way. Given a subgroup
H of G let us also set G/H = {gH | g ∈ G} and H \G = {Hg | g ∈ G}; in other words, G/H is the set of all left cosets and
H \ G is the set of all right cosets of H. Note that we also use \ to denote the difference of two sets but, again, hopefully
this will never lead to a confusion, as in the latter meaning H \G is always empty.

Question 1. In this question and the following one G is a group and X is a left G-set.
(a) Given an x ∈ X, construct a bijection G/Gx

∼= G(x) and deduce the orbit-stabiliser theorem: if G is finite then
#G(x) is always a divisor of #G.

(b) Show that G acts on itself by conjugations and deduce that if #G is a power of a prime then G has a non-trivial
centre (recall that the centre of a group G is the set of all g ∈ G that commute with every g′ ∈ G).

(c) Show that for all g ∈ G, x ∈ X we have Ggx = gGxg
−1.

A G-set X is transitive iff there is an x ∈ X such that G(x) = X. If X,Y are G-sets and f : X → Y is a map then we
say that f is a map of G-sets or a G-map if f(gx) = gf(x) for all g ∈ G, x ∈ X. If f is bijective we say that X and Y are
isomorphic as G-sets or G-isomorphic.

Question 2. (a) Show that if X is a transitive left G-set than G(x) = X for all x ∈ G.
(b) Show that any transitive left G-set is isomorphic to G/H for some subgroup H ⊂ G.
(c) Now let H be a subgroup of G. Show that there exists a map G/H → G/H of left G-sets that takes H = eH to gH

iff g ∈ NG(H) where NG(H) is the normaliser of H in G, i.e., the largest subgroup of G in which H is normal.
(d) Deduce from the previous parts and part (c) of Question 1 that any G-map G/H → G/H is necessarily an isomorphism

and the group of all G-isomorphisms G/H → G/H is isomorphic to NG(H)/H.

Covering maps

A surjective continuous map f : X → Y is a covering map iff for all y ∈ Y there is an open U ∋ y such that f−1(U) is
homeomorphic to U× a discrete set; moreover, the homeomorphism is required to commute with the projections of both sets
onto U .

Question 3. (a) For any two g1, g2 ≥ 1 such that (2 − 2g2) divides (2 − 2g1) construct a covering Sg1 → Sg2 where Sg

denotes an orientable compact connected genus g surface without boundary.
(b) Can a compact connected surface without boundary other than S2 cover S2?

Recall that an action of a discrete group G on a topological space X is properly discontinuous iff for all x ∈ X there is an
open U ∋ x such that g(U)∩U = ∅ for all g ∈ G, g 6= e, the unit element of G. (Note that this definition has to be modified
a bit if G itself has a non-trivial topology but we do not consider such groups here.)

Question 4. (a) Show that if G acts properly discontinuously on a path connected and locally path connected topological
space X, then the map p : X → X/G is a covering map.

(b) Choose an x0 ∈ X/G and a loop γ in X/G based at x0. Show that either all lifts of γ to X are loops, or all of them
are non-loops.

(c) In the lectures we have constructed an action of π1(X/G, x0) on p−1(x0) such that the stabiliser of x̃0 ∈ p−1(x0) is
precisely p∗(π1(X, x̃0)). Use this and part (c) of Question 1 to show that the latter group is normal in π1(X/G, x0).

Miscellany

Question 5. Show that if a topological space X is represented as a union Y ∪ Z of its closed subspaces and f : Y →W
is a continuous map then X ∪f W is homeomorphic to Y ∪f |Y ∩Z

W .

Question 6. Set X = Dn, U = Un ⊂ X and let f : X → Y be a map from X to a Hausdorff space Y that is injective
on U . Show that the following statements are equivalent:

(a) f |U is a homeomorphism onto its image.
(b) f(U) ∩ f(X \ U) = ∅.
[Hint: to show (a)⇒(b) join a point x ∈ Sn−1 such that f(x) = f(u), u ∈ U with point in U by a segment that does not

contain u; then try to find a closed subset of U whose image is not closed in f(U); to show (b)⇒(a) show that if (b) then
for a closed Z ⊂ U we have f(Z̄) ∩ f(U) = f(Z).]
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Problems for discussion

In this last discussion session we consider the Riemann-Hurwitz formula and some of its applications.
Here is a slight variation on the notion of a covering map: suppose M,N are surfaces and let f :M → N be a continuous

map. We say that f is a branched covering if it is a genuine covering map over N minus a discrete set. The minimal K ⊂ N
such that f |f−1(N\K) : f

−1(N \K) → N \K is a covering map is called the branch locus or ramification locus of f .
It can be shown that if f is a branched covering then for any x ∈ M there are open sets U ∋ x, V ∋ f(x) and

homeomorphisms ϕ : U → U ′ ⊂ C, ψ : V → V ′ ⊂ C such that U ′, V ′ are open in C, contain the origin and ψ ◦ f ◦ ϕ−1 is
given by z 7→ zn, n > 0. In other words f can locally be written as z 7→ zn. The integer n is called the local multiplicity of f
at x; we’ll denote it µx. It can be shown that the local multiplicity is well-defined, i.e., that it does not depend on U, V, ϕ, ψ.
The set of all x ∈M such that the local multiplicity of f at x is > 0 is called the singular locus of f and is denoted Sing(f).
The image of the singular locus is contained in the ramification locus.

Branch covers are far more abundant than covering maps. For instance, a Riemann surface is a surface M such that for
every x ∈ M there is an open Ux ∋ x and a homeomorphism ϕx : Ux → U ′

x (where U ′
x is an open subset of C) such that

if Ux ∩ Uy 6= ∅ then ϕx ◦ ϕ−1
y is (on its domain of definition ⊂ C) a homolorphic map with nowhere vanishing derivative.

This allows one to define holomorphic maps between Riemann surfaces; the definition generalises that of a holomorphic map
between open subsets of C. It turns out that every holomorphic map from one compact Riemann surface to another is a
branched cover (note that genuine covering maps are relatively rare).

In the sequel f :M → N is a continuous map of compact surfaces without boundary.
1. Show that if f is a genuine covering map then for all y ∈ N the preimage f−1(y) contains finitely many elements and

show that χ(M) = nχM where n = #f−1(y), y ∈ N .
2. From now on we suppose that f is a branched covering and let K be the ramification locus. Show that for all y ∈ N

the preimage f−1(y) contains finitely many elements

χ(M) = (χ(N)−#K)n+ n

where n = #f−1(y), y ∈ N \K. This is the first version of the Riemann-Hurwitz formula.
3. Show that for any y ∈ N (which may or may not belong to K) we have

∑
x∈f−1(y) µx = n. One way to rephrase

this would be that the preimages of all points of N contain the same number of elements, provided one counts them with
multiplicities. Deduce that

χ(M) = nχ(N)−
∑

x∈Sing(f)

(µx − 1).

This is the second version of the Riemann-Hurwitz formula.
4. Now let M be the set of all (x : y : z) ∈ CP 2 such that xk + yk = zk and set N = {(0 : y : z) ∈ CP 2} ∼= CP 1. Set

Z = CP 2 \ {(1 : 0 : 0)} and define a map f : Z → N as follows: for each P ∈ Z trace a projective line through P and
(1 : 0 : 0) and set f(P ) to be the point where this line intersects Z.

(a) Show that M ⊂ Z and that f is well defined.
(b) Using the first version of the Riemann-Hurwitz formula show that, assumingM is a compact surface without boundary,

χ(M) = n(3− n). Assuming M is orientable, deduce that the genus of M is (k−1)(k−2)
2 .

Remark. From this one can deduce that the genus of every smooth degree k curve in CP 2 is (k−1)(k−2)
2 .

5. Suppose M is a surface without boundary and that a finite group G acts on M so that the quotient N = M/G is
again a surface and the natural map p :M → N is a branched covering. One can show that this is always the case when M
is a Riemann surface and M acts by biholomorphic transformations (e.g., holomorphic homeomorphisms whose inverses are
again holomorphic) but we will not attempt this. Furthermore, we assume the action to be faithful (only the unit element of
G acts as the identity transformation) and we set n = #G.

(a) Show that for all y ∈ N we have #f−1(y)|n.
From now on we suppose χ(M) < 0. Set k = #K. We want to find an upper bound on n in terms of χ(M).
(b) Show that if k = 0 then n ≤ −χM = |χM |.
(c) From now on we suppose that, in addition to the above, k > 0. Using the Riemann-Hurwitz formula show that if

χN ≤ 0 then χ(M) ≤ −kn
2 and deduce that n ≤ −2χ(M) = 2|χM |.

From now on we suppose that, in addition to all the above, χ(N) > 0, which makes N a real projective plane or S2.
(d) Show that if N ∼= RP 2 then χ(M) ≤ −kn

2 + n. Deduce that k ≤ 3, then n ≤ −2χ(M) = 2|χM | as above. Using
Riemann-Hurwitz again show that k = 1 is impossible and if k = 2 then −χ(M) ≥ n

6 , which gives n ≤ −6χ(M) = 6|χM |.
[Hint: for any integers a, b > 1 the sum 1

a
+ 1

b
is either 1 or ≤ 5

6 .]
(e) In a similar way show that if N = S2, then n ≤ −42χ(M) = 42|χM |. [Hint: as in part (d), one shows that

χ(M) ≤ −kn
2 + 2n, and then gets the cases k ≥ 5 and k = 1, 2 out of the way. Then, to see what happens when e.g. = k3,

one might try to show first that if a, b, c are integers > 1, then 1
a
+ 1

b
+ 1

c
is either ≥ 1 or ≤ some rational number < 1; which

number? and why? The case k = 4 is similar.]
So in each of the above cases n ≤ 42|χM |. Notice that this depends only on M , not on N . In other words, using a

topological argument we have shown that groups which are too large cannot act in a nice way on a given surface, provided
the Euler characteristic is negative. When the surface in question is a Riemann surface, this becomes the Hurwitz bound

on the order of the automorphism group of a smooth complex projective curve.
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