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Real projective spaces

In this part we’ll often have to consider quotient spaces, so let us first recall a useful notion from set theory.
Suppose X is a set and {(xα, yα)}α∈A is a subset of X2. Then the equivalence relation ∼ generated by xα ∼ yα, α ∈ A
is defined as follows: x ∼ y iff x = y or there is a finite sequence

x = x0, x1, . . . , xn = y

such that for any i there is an α ∈ A for which xi = xα, xi+1 = yα or xi = yα, xi+1 = xα. This is the finest equivalence
relation under which each xα becomes equivalent to yα. We will usually denote the quotient as X/xα ∼ yα, α ∈ A.
For example, [0, 1]/0 ∼ 1 is the quotient of [0, 1] with respect to the following equivalence relation: x ∼ y iff x = y or
x = 0, y = 1 or x = 1, y = 0.

If X is a topological space equipped with an equivalence relation ∼X and Y ⊂ X is a subspace, then ∼X induces
an equivalence relation ∼Y on Y . We have a natural map Y/ ∼Y → X/ ∼X .

Question 1. (a) Show that this map is continuous.
(b) Set X = [0, 1] and set Y to be the subset whose elements are 0, 1

n
, n ∈ Z>1 and 1 − 1

n
, n ∈ Z>1. Let ∼ be

the equivalence relation generated by 0 ∼ 1. Show that the map Y/ ∼Y → X/ ∼X is not a homeomorphism onto its
image.

Nevertheless, if Y is compact and X/ ∼X is Hausdorff, these kind of problems do not occur, which might come in
useful in the next question.

Recall that the real projective space RPn is Rn+1 \ {0}/ ∼ where x ∼ y iff there is a t ∈ R \ {0} such that tx = y.
The equivalence class of (x0, . . . , xn) is denoted (x0 : . . . : xn).

Set
Sn = {(x1, . . . , xn+1) ∈ R

n+1 |
∑

x2
i = 1}, Dn = {(x1, . . . , xn) ∈ R

n |
∑

x2
i ≤ 1}.

Question 2. Show that RPn is homeomorphic to
(a) Sn/ ∼ where x ∼ y iff x = ±y.
(b) Dn/ ∼ where x ∼ y iff x = y or both x, y ∈ Sn−1 and x = ±y.

Surfaces

Question 3. Show that RP 2 minus a small open disk is homeomorphic to the Möbius strip.

Question 4. (a) Let ∼ be the equivalence relation on the cylinder X = S1 × [0, 1] generated by (x, 0) ∼ (−x, 0).
Show that X/ ∼ is homeomorphic to the 2-torus.

(b) Now let ∼ be the equivalence relation on the cylinder X generated by (x, 0) ∼ (x̄, 0) where we view S1 as the
unit circle in C and so x̄ is the complex conjugate of x. Show that X/ ∼ is homeomorphic to the Klein bottle.

Question 5. Show that T 2#RP 2 is homeomorphic to RP 2#RP 2#RP 2.

Homotopy and homotopy equivalence

Let X,Y be topological spaces.
Recall that two continuous maps f0, f1 : X → Y are homotopic iff there is a continuous map F : X × [0, 1] → Y

such that for all x ∈ X we have f0(x) = F (x, 0), f1(x) = F (x, 1).
Question 6. Show that being homotopic is an equivalence relation on the set of all continuous mapr X → Y .

[Hint: use question 2 from problem sheet 1.]

We say that X,Y are homotopy equivalent iff there are continuous maps f : X → Y, g : Y → X such that
f ◦ g ∼ idY , g ◦ f ∼ idX .

Question 7. (a) LetX,Y, Z be topological spaces. Show that if continuous maps f0, f1 : X → Y and g0, g1 : Y → Z
are homotopic, then so are g0 ◦ f0 and g1 ◦ f1. Deduce that if X is homotopy equivalent to Y and Y is homotopy
equivalent to Y , then X is homotopy equivalent to Z.

(b) Let X ⊂ R
n be a subset with the property that there is an x0 ∈ X such that for all x ∈ X the segment that

joins x and x0 is included in X. For example, all convex sets have this property: one can take any point as x0. Show
that X is homotopy equivalent to {x0}.

(c) Show that Rn \ {0} is homotopy equivalent to Sn−1.
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Problems for discussion

Recall that a half space of Rn is the set of all x ∈ R
n such that f(x) ≥ 0 where f(x1, . . . , xn) =

∑
aixi+a, ai, a ∈ R.

A polytope or a polyhedron is the intersection of finitely many half-spaces. A polytope in R
n is regular iff its isometry

group acts transitively on the set of all collections (f0, . . . , fn−1) such that f0 ⊂ . . . ⊂ fn−1, where fi is a face of
dimension i.

We want to show that a regular polytope P in R
3 has the same number of vertices, edges and 2-faces (denote these

numbers v, e, f respectively) as a polytope from the following list: a simplex, a cube, an octahedron, a dodecahedron,
an icosahedron.

1. Prove that all 2-faces of P have the same number of edges and at all vertices the same number of edges meet.
Denote these numbers k and n respectively. Explain why v− e+ f = 2 using Euler’s formula from problem sheet 1 or
the Euler characteristic.

2. Show that e = fk
2
, v = fk

n
.

We will assume that n, k ≥ 3.
3. Show that k < 6.
4. Show that P has the same number of vertices, edges and 2-faces as
a) a simplex, an octahedron or an icosahedron if k = 3;
b) a cube if k = 4;
c) a dodecahedron if k = 5.

Using Euclidean geometry one can show that all the regular polytopes from the above list do in fact exist and are
unique up to an isometry of R3, possibly composed with a homothety (dilation). Topology cannot tell us that. Note
however that since our argument uses no geometry at all, apart from the assumption n, k ≥ 3, our conclusion is also
valid for polytopes with spherical boundary in spherical or hyperbolic geometry or, more generally, in any Riemannian
3-manifold for which the definition of a regular polytope makes sense.
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