HSE/Math in Moscow 2013-2014// Topology 1 // Problem sheet 6

Real projective spaces

In this part we'll often have to consider quotient spaces, so let us first recall a useful notion from set theory. Suppose X is a set and $\left\{\left(x_{\alpha}, y_{\alpha}\right)\right\}_{\alpha \in A}$ is a subset of X^{2}. Then the equivalence relation \sim generated by $x_{\alpha} \sim y_{\alpha}, \alpha \in A$ is defined as follows: $x \sim y$ iff $x=y$ or there is a finite sequence

$$
x=x_{0}, x_{1}, \ldots, x_{n}=y
$$

such that for any i there is an $\alpha \in A$ for which $x_{i}=x_{\alpha}, x_{i+1}=y_{\alpha}$ or $x_{i}=y_{\alpha}, x_{i+1}=x_{\alpha}$. This is the finest equivalence relation under which each x_{α} becomes equivalent to y_{α}. We will usually denote the quotient as $X / x_{\alpha} \sim y_{\alpha}, \alpha \in A$. For example, $[0,1] / 0 \sim 1$ is the quotient of $[0,1]$ with respect to the following equivalence relation: $x \sim y$ iff $x=y$ or $x=0, y=1$ or $x=1, y=0$.

If X is a topological space equipped with an equivalence relation \sim_{X} and $Y \subset X$ is a subspace, then \sim_{X} induces an equivalence relation \sim_{Y} on Y. We have a natural map $Y / \sim_{Y} \rightarrow X / \sim_{X}$.

Question 1. (a) Show that this map is continuous.
(b) Set $X=[0,1]$ and set Y to be the subset whose elements are $0, \frac{1}{n}, n \in \mathbb{Z}_{>1}$ and $1-\frac{1}{n}, n \in \mathbb{Z}_{>1}$. Let \sim be the equivalence relation generated by $0 \sim 1$. Show that the map $Y / \sim_{Y} \rightarrow X / \sim_{X}$ is not a homeomorphism onto its image.

Nevertheless, if Y is compact and X / \sim_{X} is Hausdorff, these kind of problems do not occur, which might come in useful in the next question.

Recall that the real projective space $\mathbb{R} P^{n}$ is $\mathbb{R}^{n+1} \backslash\{0\} / \sim$ where $x \sim y$ iff there is a $t \in \mathbb{R} \backslash\{0\}$ such that $t x=y$. The equivalence class of $\left(x_{0}, \ldots, x_{n}\right)$ is denoted $\left(x_{0}: \ldots: x_{n}\right)$.

Set

$$
S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid \sum x_{i}^{2}=1\right\}, D^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum x_{i}^{2} \leq 1\right\}
$$

Question 2. Show that $\mathbb{R} P^{n}$ is homeomorphic to
(a) S^{n} / \sim where $x \sim y$ iff $x= \pm y$.
(b) D^{n} / \sim where $x \sim y$ iff $x=y$ or both $x, y \in S^{n-1}$ and $x= \pm y$.

Surfaces

Question 3. Show that $\mathbb{R} P^{2}$ minus a small open disk is homeomorphic to the Möbius strip.
Question 4. (a) Let \sim be the equivalence relation on the cylinder $X=S_{1} \times[0,1]$ generated by $(x, 0) \sim(-x, 0)$. Show that X / \sim is homeomorphic to the 2-torus.
(b) Now let \sim be the equivalence relation on the cylinder X generated by $(x, 0) \sim(\bar{x}, 0)$ where we view S^{1} as the unit circle in \mathbb{C} and so \bar{x} is the complex conjugate of x. Show that X / \sim is homeomorphic to the Klein bottle.

Question 5. Show that $T^{2} \# \mathbb{R} P^{2}$ is homeomorphic to $\mathbb{R} P^{2} \# \mathbb{R} P^{2} \# \mathbb{R} P^{2}$.

Homotopy and homotopy equivalence

Let X, Y be topological spaces.
Recall that two continuous maps $f_{0}, f_{1}: X \rightarrow Y$ are homotopic iff there is a continuous map $F: X \times[0,1] \rightarrow Y$ such that for all $x \in X$ we have $f_{0}(x)=F(x, 0), f_{1}(x)=F(x, 1)$.

Question 6. Show that being homotopic is an equivalence relation on the set of all continuous mapr $X \rightarrow Y$. [Hint: use question 2 from problem sheet 1.]

We say that X, Y are homotopy equivalent iff there are continuous maps $f: X \rightarrow Y, g: Y \rightarrow X$ such that $f \circ g \sim i d_{Y}, g \circ f \sim i d_{X}$.

Question 7. (a) Let X, Y, Z be topological spaces. Show that if continuous maps $f_{0}, f_{1}: X \rightarrow Y$ and $g_{0}, g_{1}: Y \rightarrow Z$ are homotopic, then so are $g_{0} \circ f_{0}$ and $g_{1} \circ f_{1}$. Deduce that if X is homotopy equivalent to Y and Y is homotopy equivalent to Y, then X is homotopy equivalent to Z.
(b) Let $X \subset \mathbb{R}^{n}$ be a subset with the property that there is an $x_{0} \in X$ such that for all $x \in X$ the segment that joins x and x_{0} is included in X. For example, all convex sets have this property: one can take any point as x_{0}. Show that X is homotopy equivalent to $\left\{x_{0}\right\}$.
(c) Show that $\mathbb{R}^{n} \backslash\{0\}$ is homotopy equivalent to S^{n-1}.

Problems for discussion

Recall that a half space of \mathbb{R}^{n} is the set of all $x \in \mathbb{R}^{n}$ such that $f(x) \geq 0$ where $f\left(x_{1}, \ldots, x_{n}\right)=\sum a_{i} x_{i}+a, a_{i}, a \in \mathbb{R}$. A polytope or a polyhedron is the intersection of finitely many half-spaces. A polytope in \mathbb{R}^{n} is regular iff its isometry group acts transitively on the set of all collections $\left(f_{0}, \ldots, f_{n-1}\right)$ such that $f_{0} \subset \ldots \subset f_{n-1}$, where f_{i} is a face of dimension i.

We want to show that a regular polytope P in \mathbb{R}^{3} has the same number of vertices, edges and 2-faces (denote these numbers v, e, f respectively) as a polytope from the following list: a simplex, a cube, an octahedron, a dodecahedron, an icosahedron.

1. Prove that all 2-faces of P have the same number of edges and at all vertices the same number of edges meet. Denote these numbers k and n respectively. Explain why $v-e+f=2$ using Euler's formula from problem sheet 1 or the Euler characteristic.
2. Show that $e=\frac{f k}{2}, v=\frac{f k}{n}$.

We will assume that $n, k \geq 3$.
3. Show that $k<6$.
4. Show that P has the same number of vertices, edges and 2 -faces as
a) a simplex, an octahedron or an icosahedron if $k=3$;
b) a cube if $k=4$;
c) a dodecahedron if $k=5$.

Using Euclidean geometry one can show that all the regular polytopes from the above list do in fact exist and are unique up to an isometry of \mathbb{R}^{3}, possibly composed with a homothety (dilation). Topology cannot tell us that. Note however that since our argument uses no geometry at all, apart from the assumption $n, k \geq 3$, our conclusion is also valid for polytopes with spherical boundary in spherical or hyperbolic geometry or, more generally, in any Riemannian 3-manifold for which the definition of a regular polytope makes sense.

