Real projective spaces

In this part we'll often have to consider quotient spaces, so let us first recall a useful notion from set theory. Suppose X is a set and $\{(x_{\alpha}, y_{\alpha})\}_{\alpha \in A}$ is a subset of X^2 . Then the *equivalence relation* ~ *generated by* $x_{\alpha} \sim y_{\alpha}, \alpha \in A$ is defined as follows: $x \sim y$ iff x = y or there is a finite sequence

$$x = x_0, x_1, \dots, x_n = y$$

such that for any *i* there is an $\alpha \in A$ for which $x_i = x_\alpha$, $x_{i+1} = y_\alpha$ or $x_i = y_\alpha$, $x_{i+1} = x_\alpha$. This is the finest equivalence relation under which each x_α becomes equivalent to y_α . We will usually denote the quotient as $X/x_\alpha \sim y_\alpha$, $\alpha \in A$. For example, $[0,1]/0 \sim 1$ is the quotient of [0,1] with respect to the following equivalence relation: $x \sim y$ iff x = y or x = 0, y = 1 or x = 1, y = 0.

If X is a topological space equipped with an equivalence relation \sim_X and $Y \subset X$ is a subspace, then \sim_X induces an equivalence relation \sim_Y on Y. We have a natural map $Y/\sim_Y \to X/\sim_X$.

Question 1. (a) Show that this map is continuous.

(b) Set X = [0, 1] and set Y to be the subset whose elements are $0, \frac{1}{n}, n \in \mathbb{Z}_{>1}$ and $1 - \frac{1}{n}, n \in \mathbb{Z}_{>1}$. Let ~ be the equivalence relation generated by $0 \sim 1$. Show that the map $Y/\sim_Y \to X/\sim_X$ is not a homeomorphism onto its image.

Nevertheless, if Y is compact and X/\sim_X is Hausdorff, these kind of problems do not occur, which might come in useful in the next question.

Recall that the real projective space $\mathbb{R}P^n$ is $\mathbb{R}^{n+1} \setminus \{0\}/\sim$ where $x \sim y$ iff there is a $t \in \mathbb{R} \setminus \{0\}$ such that tx = y. The equivalence class of (x_0, \ldots, x_n) is denoted $(x_0 : \ldots : x_n)$.

Set

$$S^{n} = \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum x_{i}^{2} = 1\}, D^{n} = \{(x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid \sum x_{i}^{2} \le 1\}.$$

Question 2. Show that $\mathbb{R}P^n$ is homeomorphic to

(a) S^n / \sim where $x \sim y$ iff $x = \pm y$.

(b) D^n/\sim where $x\sim y$ iff x=y or both $x,y\in S^{n-1}$ and $x=\pm y$.

Surfaces

Question 3. Show that $\mathbb{R}P^2$ minus a small open disk is homeomorphic to the Möbius strip.

Question 4. (a) Let ~ be the equivalence relation on the cylinder $X = S_1 \times [0,1]$ generated by $(x,0) \sim (-x,0)$. Show that X/\sim is homeomorphic to the 2-torus.

(b) Now let ~ be the equivalence relation on the cylinder X generated by $(x, 0) \sim (\bar{x}, 0)$ where we view S^1 as the unit circle in \mathbb{C} and so \bar{x} is the complex conjugate of x. Show that X/\sim is homeomorphic to the Klein bottle.

Question 5. Show that $T^2 \# \mathbb{R}P^2$ is homeomorphic to $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$.

Homotopy and homotopy equivalence

Let X, Y be topological spaces.

Recall that two continuous maps $f_0, f_1 : X \to Y$ are homotopic iff there is a continuous map $F : X \times [0,1] \to Y$ such that for all $x \in X$ we have $f_0(x) = F(x,0), f_1(x) = F(x,1)$.

Question 6. Show that being homotopic is an equivalence relation on the set of all continuous maps $X \to Y$. [Hint: use question 2 from problem sheet 1.]

We say that X, Y are homotopy equivalent iff there are continuous maps $f : X \to Y, g : Y \to X$ such that $f \circ g \sim id_Y, g \circ f \sim id_X$.

Question 7. (a) Let X, Y, Z be topological spaces. Show that if continuous maps $f_0, f_1 : X \to Y$ and $g_0, g_1 : Y \to Z$ are homotopic, then so are $g_0 \circ f_0$ and $g_1 \circ f_1$. Deduce that if X is homotopy equivalent to Y and Y is homotopy equivalent to Y, then X is homotopy equivalent to Z.

(b) Let $X \subset \mathbb{R}^n$ be a subset with the property that there is an $x_0 \in X$ such that for all $x \in X$ the segment that joins x and x_0 is included in X. For example, all convex sets have this property: one can take any point as x_0 . Show that X is homotopy equivalent to $\{x_0\}$.

(c) Show that $\mathbb{R}^n \setminus \{0\}$ is homotopy equivalent to S^{n-1} .

Problems for discussion

Recall that a half space of \mathbb{R}^n is the set of all $x \in \mathbb{R}^n$ such that $f(x) \ge 0$ where $f(x_1, \ldots, x_n) = \sum a_i x_i + a, a_i, a \in \mathbb{R}$. A polytope or a polyhedron is the intersection of finitely many half-spaces. A polytope in \mathbb{R}^n is regular iff its isometry group acts transitively on the set of all collections (f_0, \ldots, f_{n-1}) such that $f_0 \subset \ldots \subset f_{n-1}$, where f_i is a face of dimension i.

We want to show that a regular polytope P in \mathbb{R}^3 has the same number of vertices, edges and 2-faces (denote these numbers v, e, f respectively) as a polytope from the following list: a simplex, a cube, an octahedron, a dodecahedron, an icosahedron.

1. Prove that all 2-faces of P have the same number of edges and at all vertices the same number of edges meet. Denote these numbers k and n respectively. Explain why v - e + f = 2 using Euler's formula from problem sheet 1 or the Euler characteristic.

2. Show that $e = \frac{fk}{2}, v = \frac{fk}{n}$. We will assume that $n, k \ge 3$.

3. Show that k < 6.

4. Show that P has the same number of vertices, edges and 2-faces as

a) a simplex, an octahedron or an icosahedron if k = 3;

b) a cube if k = 4;

c) a dodecahedron if k = 5.

Using Euclidean geometry one can show that all the regular polytopes from the above list do in fact exist and are unique up to an isometry of \mathbb{R}^3 , possibly composed with a homothety (dilation). Topology cannot tell us that. Note however that since our argument uses no geometry at all, apart from the assumption $n, k \geq 3$, our conclusion is also valid for polytopes with spherical boundary in spherical or hyperbolic geometry or, more generally, in any Riemannian 3-manifold for which the definition of a regular polytope makes sense.