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Compact spaces, Hausdorff spaces and homeomorphisms

A very important notion in topology is that of a compact space. An open cover of a topological space X is a
collection {Ui}i∈I of open subsets such that

⋃
i∈I Ui = X. We say that X is compact iff any open cover {Ui}i∈I of

X contains a finite subcover, i.e., there is a finite subset J ⊂ I such that
⋃

j∈J Uj = X. For example, every finite
topological space is compact. We will assume that the closed unit interval [0, 1] is compact. A typical non-example is
R: it can be covered by the open intervals (−n, n), n ∈ Z>0.

Question 1. a) Let f : X → Y be a continuous map of topological spaces. Prove that if A ⊂ X is compact (in
the topology induced by the inclusion in X) then so is f(A) (in the topology induced by the inclusion in Y ).

b) Give an example of a continuous map f : X → Y and a compact subset B of Y such that f−1(B) is not compact.

A topological space X is Hausdorff iff for any x, y ∈ X such that x 6= y there are open subsets U ∋ x and V ∋ y
such that U ∩ V = ∅. A typical example would be the Euclidean space R

n or any of its subspaces.
Remark. In some sources compact spaces are required, in addition to the above property, to be Hausdorff, while

spaces which only have the above property but are not necessarily Hausdorff are called quasi-compact. In this course
we will encounter very few non-Hausdorff spaces, if any. Nevertheless, every now and again we will have to check that
something that we have constructed is Hausdorff.

Question 2. Show that if X is Hausdorff and A is compact then A is closed in X.

Question 3. Show that a closed subset of a compact space is again compact.

Question 4. a) Show that if X is compact and Y is Hausdorff, then any continuous bijection f : X → Y is a
homeomorphism. [Hint: show that f takes closed sets to closed sets.]

b) In problem sheet 1 we saw that the compactness of X is necessary in order for the conclusion from part a) to
be true. Show that the condition that Y be Hausdorff is necessary as well.

The Cartesian product X × Y of topological spaces X and Y can be equipped with the product topology, in which
W ⊂ X × Y is open iff for every (x, y) ∈ W there are open subsets U ∋ x of X and V ∋ y of Y such that U × V ⊂ W .
Note that this generalises the topology we introduced on R

n in the lectures.
As a side remark, the product of an infinite family of topological spaces can be topologised in a similar way, and

it turns out that if all the factors are compact, so is their product. This fact is called Tikhonov’s theorem and it has
several important applications, but we will neither need it nor prove it in this course.

Recall that a subset X of Rn is bounded iff X is contained in some (closed or open) ball.
Question 5. Show that [0, 1]n is compact. Deduce that a subset of Rn is compact iff it is closed and bounded.

Quotient topology

Question 6. Set X to be the Stiefel manifold

Vm(Rn) = {(v1, . . . , vm) ∈ R
n × · · · × R

n | v1, . . . , vm are linearly independent}.

We set (v1, . . . , vm) ∼ (v′1, . . . , v
′
m) iff v1, . . . , vm and v′1, . . . , v

′
m span the same m-plane. Show that X/ ∼ is

compact, Hausdorff, and each of its points has a neighbourhood homeomorphic to R
m(n−m). This space will be called

the Grassmannian of m-planes in R
n and denoted Gm(Rn). [Hint: if Rn = V ⊕W then one can view V as the graph

of a linear mapping V → W , namely, the zero mapping. What other vector subspaces of Rn of dimension dimV can
be regarded as graphs of linear mappings V → W?]

If m = 1, the resulting space is called the n−1 dimensional real projective space and is denoted RPn−1 or Pn−1(R).
In a similar way one defines the complex projective space CPn and the quaternionic projective space HPn, and also

complex and quaternionic Grassmannians, denoted Gm(Cn) and Gm(Hn) respectively. In the quaternionic case there
are two options: one can consider either left or right quaternionic subspaces. This does not make much difference,
as every left quaternionic subspace can be turned into a right one, and vice versa, via the quaternionic conjugation
a+ bi+ cj + dk 7→ a− bi− cj − dk, a, b, c, d ∈ R, so the resulting quaternionic Grassmannians are homeomorphic.

Suppose we have two topological spaces X,Y and a continuous map f : X ′ → Y where X ′ is a subspace of X. Then
we can define an equivalence relation ∼ on X ⊔ Y as follows: for any x1, x2 ∈ X ′ such that f(x1) = f(x2) = y ∈ Y
we set x1 ∼ x2 ∼ y. The quotient space will be denoted as X ∪f Y and will be called the result of attaching X to Y
along f . In the particular case when Y is a point we will write X/X ′ instead of X ∪f Y .

Ths mapping cylinder Cyl(f) of a continous map f : X → Y is defined as (X× [0, 1])∪f0 Y where f0 : X×{0} → Y
is given by f0(x, 0) = f(x). The space Cone(f) = Cyl(f)/(X × {1}) will be called the mapping cone of f .
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Question 7. Show that the mapping cone of the natural map Sn → RPn is homeomorphic to RPn+1.
Problems for discussion

In this part we consider S1 as the unit circle in C.
1. We define a map E : R → S1 by setting E(x) = e2πix. Show that if f : S1 → S1 is continuous, then it can be

lifted to a continuous map f̄ : R → R, i.e., there is a continuous map f̄ : R → R such that f ◦E = E ◦ f̄ . Show that if
F : S1 × [0, 1] → S1 is a homotopy then there is a homotopy F̄ : R× [0, 1] → R that lifts F , i.e., F ◦ E = E ◦ F̄ . (All
this is a special case of the homotopy lifting property, which we will prove later on in this course.)

2. Show that if f̄1, f̄2 : R → R lift the same f : S1 → S1, then there is an n ∈ Z such that f̄1(t)− f̄2(t) = n for all
t ∈ R. Show that there is a d ∈ Z such that if f̄ : R → R is any lift of f , then f̄(t + 1) − f̄(t) = d. This integer d is
called the degree of f .

3. Show that homotopic maps S1 → S1 have the same degrees. Conversely, show that if two maps S1 → S1 have
the same degrees, they are homotopic.

4. Calculate the degree of the map S1 ∋ z 7→ zn ∈ S1.
5. Let f(z) = zn+an−1z

n−1+ · · ·+a1z+a0 be a complex polynomial. Suppose f has no complex roots. For each

t ∈ R≥0 define a map ft : S
1 → S1 by setting ft(z) =

f(tz)
|f(tz)| . Show that if t ≥ 2nmax(ai) then ft is homotopic to

z 7→ zn. [Hint: consider the family s 7→ zn+ s(an−1z
n−1+ · · ·+ a1z+ a0) of polynomials.] Deduce the “main theorem

of algebra”.
6. Let D2 denote the unit disk ⊂ C. Let f : D2 → D2 be a continuous map. Suppose f has no fixed points.

Define ut : S
1 → S1, t ∈ [0, 1] by ut(z) = g(tz) where g : D2 → S1 is given by g(z) = f(z)−z

|f(z)−z| . Show that the degree of

u0 is 0. Show that u1 is homotopic to the map z 7→ −z. Calculate the degree of the latter map and deduce Brouwer’s
theorem in dimension 2.
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