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Bases

A family U of open subsets of a topological space X is a called a base iff for any x ∈ X and any open V ∋ x there is
a U ∈ U such that x ∈ U ⊂ V . Many interesting spaces turn out to have a countable base of open sets. For example,
open intervals (a, b), a, b ∈ Q form a base for the usual topology of R.

A topological space is called separable iff it has a countable dense subset. For example, R is separable as Q ⊂ R is
dense and countable.

Question 1. (a) Show that Rn with the usual topology is separable and has a countable base of open subsets.
(b) Show that if a topological space X has a countable base U and Y ⊂ X is a subspace, then U ∩ Y,U ∈ U form

a countable base for Y .

Question 2. Show that a family U of open subsets of a topological space X is a base iff every open U ⊂ X can
be represented as the union of some collection of subsets from U .

Question 3. (a) Show that if a topological space has a countable base, it is separable.
(b) Show that if a metric space is separable, it has a countable base.
So a metric space is separable iff it has a countable base, and in this case each of its subsets is again separable.

Neither this conclusion, nor the conclusion of 1 (b) is true for general spaces but we’ll not dwell on this.
Hausdorff metric

If (X, d) is a metric space, x ∈ X and Y ⊂ X, then we set d(x, Y ) = infy∈Y d(x, y).
Question 4. (a) Show that if Y is compact then we could replace inf by max in this definition, i.e., the infimum

is attained at some y ∈ Y .
(b) Show by example that in general, even if Y is closed in X, nevertheless it can happen that the infimum is not

attained. [Hint: take X equal R2 minus a point.]

Given a metric space (X, d) and two non-empty subsets Y,Z ⊂ X we define the Hausdorff distance dH(Y,Z)
between Y and Z as

dH(Y,Z) = max(sup
y∈Y

d(y, Z), sup
z∈Z

d(z, Y )) ∈ [0,+∞].

Question 5. Show that for all Y,Z,W ⊂ X non-empty the triangle inequality holds: dH(Y,W ) ≤ dH(Y,Z) +
dH(Z,W ). [Hint: set dY Z = dH(Y,Z), dZ,W = dH(Z,W ); take a y ∈ Y and show that for all ε > 0 there is a w ∈ W

such that d(y, w) < dY Z + dZW + ε; deduce that d(y,W ) ≤ dY Z + dZW .]
Question 6. (a) Show that if Y,Z ⊂ X are non-empty, then d(Y,Z) = 0 iff Ȳ = Z̄.
(b) Give an example of two non-empty closed subsets of a metric space such that the Hausdorff distance between

them is infinite.
So the Hausdorff distance is not really a metric in the sense of problem sheet 3. Nevertheless, if we fix a non-empty

closed Y ⊂ X we do get a genuine metric on the set of all non-empty closed Z ⊂ X such that dH(Y,Z) < ∞. If X
has finite diameter (i.e., if there is a D ∈ R such that d(x, y) ≤ D for all x, y ∈ X), we get a metric on the set of all
closed subsets.

Continuity vs uniform continuity

Let f : (X, dX) → (Y, dY ) be a map of metric spaces. We say that f is continuous iff for all x ∈ X and ε > 0 there
is a δ = δ(x, ε) (which depends on x and ε) such that dX(x, x′) < δ implies that dY (f(x), f(x

′)) < ε. We say that f
is uniformly continuous iff for all ε > 0 there is a δ = δ(ε) (which depends only on ε) such that dX(x, x′) < δ implies
that dY (f(x), f(x

′)) < ε. In the lectures we have seen Weierstrass’s theorem; it says that if X is compact then any
continuous f : (X, dX) → (Y, dY ) is uniformly continuous.

Question 7. (a) Show that the function f : R → R, f(x) = x2 is not uniformly continuous if R is equipped with
the standard metric.

(b) Introduce another metric on R that induces the standard topology and such that f from part (a) becomes
uniformly continuous. There are two R’s here, the source and the target. You are allowed to change the metric on
either of them, or both. [Hint: try to identify R with (0, 1) so that the map extends to the endpoints 0, 1 and use
Weierstrass’s theorem.]

So uniform continuity, as opposed to just continuity, depends on the metric, not just on the topology.
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Problems for discussion

Let τ be the space drawn on the blackboard. The point where the three segments meet will be called the centre of
τ . Let X ⊂ R2 be a disjoint union of homeomorphic copies of τ . We want to show that there are at most countably
many such copies. Clearly, one can embed uncountably many disjoint τ ’s into R3, so if we succeed, we’ll in particular
prove that R2 is not homeomorphic to R3.

1. Prove that in order to show that it suffices to show that there are at most countably many τ ’s all three of
whose tails intersect a given circle and whose centre is inside the circle. [Hint: R2 is separable (and Hausdorff); the
Intermediate Value Theorem might also come in useful here.]

Now let C be a circle in R2. We shall say that 3-element subsets K1,K2 ⊂ C are separated from one another iff
they lie in disjoint arcs of C (see blackboard).

2. Given a τ ′ whose centre is inside C construct a 3-element subset K(τ ′) ⊂ C such that if τ ′, τ ′′ are two copies
of τ with centres inside C then K(τ ′) and K(τ ′′) are separated.

3. Now equip R2 with the standard metric. Let B(C, 3) be the set of all 3-element subsets of C equipped with the
induced Hausdorff metric. Show that B(C, 3) is separable and deduce that it can’t contain uncountably many disjoint
open balls.

4. Take a K ∈ B(C, 3). Show that there is an ε depending on K such that no K ′ ∈ U(K, ε) is separated from K.
Deduce that the number of copies of τ with centres inside C and all the three tails intersecting C is at most countable.
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