Metric spaces

Recall that a *metric space* is a couple (X, d) where X is a set and d is a function $X \times X \to \mathbb{R}_{\geq 0}$, called a *metric*, such that

- d(x, y) = d(y, x) for all $x, y \in X$;
- if $x, y \in X$ then d(x, y) = 0 iff x = y;
- for all $x, y, z \in X$ the triangle inequality holds: $d(x, z) \leq d(x, y) + d(y, z)$.

In the lectures we saw that

$$d((x_1, ..., x_n), (y_1, ..., y_n)) = \sqrt{\sum (x_i - y_i)^2}$$

is a metric on \mathbb{R}^n .

If (X, d) is a metric space and $x_0 \in X$ then we define the *closed ball*

$$B(x,r) = \{x \in X \mid d(x,x_0) \le r\}$$

and the open ball

$$U(x,r) = \{ x \in X \mid d(x,x_0) < r \}$$

of radius $r \in \mathbb{R}_{>0}$ centered at x. We will often call balls of radius 1 unit balls.

A subset U of X is open iff for all $x \in U$ there is an $r \in \mathbb{R}_{>0}$ such that $U(x,r) \subset U$. This gives a topology on X which is called the *topology induced by the metric d*. As we shall see, it often happens that different metrics induce the same topology.

We will often simply write X instead of (X, d).

Question 1. Let X be a metric space.

- (a) Show that U(x,r) is open and B(x,r) is closed for all $x \in X$ and $r \in \mathbb{R}_{>0}$.
- (b) Is it always true (i.e., for all X, x, r) that the closure of U(x, r) is B(x, r)?

Question 2. In the lectures we have defined the following metrics on \mathbb{R}^n : if $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$ then

$$d_1(x,y) = \sum |x_i - y_i|, d_2(x,y) = \sqrt{\sum (x_i - y_i)^2}, d_\infty(x,y) = \max(|x_i - y_i|).$$

Let $U_1(x,r), U_2(x,r), U_{\infty}(x,r)$ be the corresponding open balls centered at $x \in \mathbb{R}^n$. Draw them for n = 2, r = 1. Show that for each $r_1 \in \mathbb{R}_{>0}$ and every $x \in \mathbb{R}^n$ there are r_2, r_{∞}, r'_1 such that

$$U_1(r_1, x) \supset U_2(r_2, x) \supset U_\infty(r_\infty, x) \supset U_1(r'_1, x).$$

Deduce that all three metrics induce the same topology on \mathbb{R}^n .

Isometries

A map $f: X \to Y$ between two metric spaces is an *isometry* iff it is distance preserving, i.e., iff for all $x_1, x_2 \in X$ we have $d(x_1, x_2) = d(f(x_1), f(x_2))$. Note that an isometry needn't be bijective: take e.g. the map $[0, \infty) \to [0, \infty)$ given by $x \mapsto x + 1$. If there is a bijective isometry $X \to Y$ we say that X and Y are *isometric*.

Question 3. Show that it is possible for the intersection of two closed balls with respect to the metrics d_1 and d_{∞} to be again a closed ball with respect to the same metric. Deduce that none of the metric spaces (\mathbb{R}^n, d_1) and $(\mathbb{R}^n, d_{\infty})$ is isometric to (\mathbb{R}^n, d_2) .

Question 4. a) Show that (\mathbb{R}^2, d_1) and (\mathbb{R}^2, d_∞) are isometric. [Hint: draw the unit balls and try to find a map that takes the unit balls of one metric to those of the other.]

b) Show that for $n \ge 3$ the spaces (\mathbb{R}^n, d_1) and (\mathbb{R}^n, d_∞) are not isometric. [Hint: given a closed unit ball B with respect to one of these metrics, how many closed unit balls B' are there such that $B \cap B'$ is a point?]

Question 5. Show that any isometry of (\mathbb{R}^n, d_2) can be written as $x \mapsto Ax + v$ where $v \in \mathbb{R}^n$ and A is an orthogonal $n \times n$ -matrix. [Hint: find a characterisation for lines and hyperplanes in terms of the metric, i.e. without referring to the structure of a vector space.]

Completeness

Let (x_n) be a sequence of elements of a metric space (X, d). We say that $x \in X$ is the *limit* of (x_n) and we write $x = \lim_{n \to \infty} x_n$ iff for all $\varepsilon > 0$ there is an $M \in \mathbb{Z}_{\geq 0}$ such that for all n > M the distance $d(x, x_n) < \varepsilon$. Equivalently, for any open $U \ni x$ there is an $M \in \mathbb{Z}_{\geq 0}$ such that for all n > M we have $x_n \in U$. Whether or not $x = \lim_{n \to \infty} x_n$, depends only on the topology of X, not on the metric.

Recall that $(x)_n$ is *Cauchy* iff for all $\varepsilon > 0$ there is an $N \in \mathbb{Z}_{\geq 0}$ such that for any $m, n \geq N$ the distance $d(x_n, x_m) < \varepsilon$. Whether or not (x_n) is Cauchy depends on the metric, not just on the topology.

We say that (X, d) is *complete* iff any Cauchy sequence (x_n) in it has a limit. Whether or not (X, d) is complete depends on the metric as well.

We assume that \mathbb{R} with the usual metric d(x, y) = |x - y| is complete.

Question 6. a) Show that \mathbb{R}^n equipped with either of the metrics d_1, d_2, d_∞ is complete.

b) Set \mathbb{R}^{∞} to be the set of all sequences (x_1, x_2, \ldots) of real numbers all but finitely many of whose terms are zero. As above, we can equip \mathbb{R}^{∞} with the metrics d_1, d_2, d_{∞} . Show that the resulting metric spaces are not complete.

Question 7. Construct a metric on (0, 1) that induces the usual topology on it and that turns it into a complete metric space. Check that the sequence (x_n) with $x_n = 1/n, n \in \mathbb{Z}_{>0}$ is not Cauchy.

Problems for discussion

For a topological space X set $C^b(X, \mathbb{R})$ to be the space of all real-valued bounded continuous functions $X \to \mathbb{R}$. This is a vector space with respect to pointwise addition and multiplication by real numbers. Define a norm on this vector space by setting $||f|| = \sup_{x \in X} |f(x)|$. Note that in the case $X = \{1, 2, ..., n\}$ with the discrete topology the space $C^b(X, \mathbb{R})$ is nothing but \mathbb{R}^n and the norm is the one that we used above to construct the metric d_{∞} .

1. Show that $C^b(X, \mathbb{R})$ is complete.

In a similar way one defines $C^b(X, V)$ where $V = \mathbb{R}^n$ with the usual metric d_2 , or more generally, any real vector space with a norm that induces a complete metric (such vector spaces are called *Banach*). The same argument shows that the resulting spaces are complete.

2. Now we construct a family of functions $f_n : [0,1] \to [0,1]^2, n \in \mathbb{Z}_{\geq 0}$. The 0-th one, f_0 , is shown on the blackboard. Suppose we have already constructed f_n and that it takes the *i*-th segment I_i of length $\frac{1}{9^n}$ to one of the squares, call it Q_i , obtained by cutting $[0,1]^2$ into 9^n equal squares. Then f_{n+1} will take I_i again to Q_i but in such a way that the resulting curve visits the centres of each of the 9 small equal squares that Q_i can be cut into. For example, we can use a smaller copy of f_0 .

Show that $d(f_n(t), f_{n+m}(t)) \leq \frac{\sqrt{2}}{9^m}$ where $n, m \in \mathbb{Z}_{>0}$ and d is the d_2 metric on the square. Deduce that (f_n) converges to a continuous function $f: [0, 1] \to [0, 1]^2$.

3. Shor that every $(x, y) \in [0, 1]^2$ is $\leq \frac{1}{9^n \sqrt{2}}$ away from a point in the image of $f_{m+n}, m, n \in \mathbb{Z}_{\geq 0}$. Deduce using $f = \lim_{n \to \infty} f_n$ that (x, y) is in the closure of the image of f.

4. Show that f is surjective. Is it injective?

In a similar way one constructs continuous surjective mappings $[0,1] \to [0,1]^k$ and $\mathbb{R} \to \mathbb{R}^k$ for all $k \in \mathbb{Z}_{\geq 0}$. Such maps are called *space filling curves*. It's not that one encounters such spaces very often in topology (one doesn't) but their existence shows that statements like " \mathbb{R}^n is not homeomorphic to \mathbb{R}^m unless m = n" or "there is no continuous injective map $\mathbb{R}^n \to \mathbb{R}^m$ if n > m", which are intuitively clear, should nevertheless not be taken for granted.