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Metric spaces

Recall that a metric space is a couple (X, d) where X is a set and d is a function X ×X → R≥0, called a metric,
such that

• d(x, y) = d(y, x) for all x, y ∈ X;

• if x, y ∈ X then d(x, y) = 0 iff x = y;

• for all x, y, z ∈ X the triangle inequality holds: d(x, z) ≤ d(x, y) + d(y, z).

In the lectures we saw that

d((x1, . . . , xn), (y1 . . . , yn)) =
√

∑

(xi − yi)2

is a metric on R
n.

If (X, d) is a metric space and x0 ∈ X then we define the closed ball

B(x, r) = {x ∈ X | d(x, x0) ≤ r}

and the open ball

U(x, r) = {x ∈ X | d(x, x0) < r}

of radius r ∈ R>0 centered at x. We will often call balls of radius 1 unit balls.
A subset U of X is open iff for all x ∈ U there is an r ∈ R>0 such that U(x, r) ⊂ U . This gives a topology on X

which is called the topology induced by the metric d. As we shall see, it often happens that different metrics induce
the same topology.

We will often simply write X instead of (X, d).

Question 1. Let X be a metric space.
(a) Show that U(x, r) is open and B(x, r) is closed for all x ∈ X and r ∈ R>0.
(b) Is it always true (i.e., for all X,x, r) that the closure of U(x, r) is B(x, r)?

Question 2. In the lectures we have defined the following metrics on R
n: if x = (x1, . . . , xn), y = (y1, . . . , yn) then

d1(x, y) =
∑

|xi − yi|, d2(x, y) =
√

∑

(xi − yi)2, d∞(x, y) = max(|xi − yi|).

Let U1(x, r), U2(x, r), U∞(x, r) be the corresponding open balls centered at x ∈ R
n. Draw them for n = 2, r = 1.

Show that for each r1 ∈ R>0 and every x ∈ R
n there are r2, r∞, r′1 such that

U1(r1, x) ⊃ U2(r2, x) ⊃ U∞(r∞, x) ⊃ U1(r
′
1, x).

Deduce that all three metrics induce the same topology on R
n.

Isometries

A map f : X → Y between two metric spaces is an isometry iff it is distance preserving, i.e., iff for all x1, x2 ∈ X
we have d(x1, x2) = d(f(x1), f(x2)). Note that an isometry needn’t be bijective: take e.g. the map [0,∞) → [0,∞)
given by x 7→ x+ 1. If there is a bijective isometry X → Y we say that X and Y are isometric.

Question 3. Show that it is possible for the intersection of two closed balls with respect to the metrics d1 and
d∞ to be again a closed ball with respect to the same metric. Deduce that none of the metric spaces (Rn, d1) and
(Rn, d∞) is isometric to (Rn, d2).

Question 4. a) Show that (R2, d1) and (R2, d∞) are isometric. [Hint: draw the unit balls and try to find a map
that takes the unit balls of one metric to those of the other.]

b) Show that for n ≥ 3 the spaces (Rn, d1) and (Rn, d∞) are not isometric. [Hint: given a closed unit ball B with
respect to one of these metrics, how many closed unit balls B′ are there such that B ∩B′ is a point?]

Question 5. Show that any isometry of (Rn, d2) can be written as x 7→ Ax + v where v ∈ R
n and A is an

orthogonal n× n-matrix. [Hint: find a characterisation for lines and hyperplanes in terms of the metric, i.e. without
referring to the structure of a vector space.]
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Completeness

Let (xn) be a sequence of elements of a metric space (X, d). We say that x ∈ X is the limit of (xn) and we write
x = limn→∞ xn iff for all ε > 0 there is an M ∈ Z≥0 such that for all n > M the distance d(x, xn) < ε. Equivalently,
for any open U ∋ x there is an M ∈ Z≥0 such that for all n > M we have xn ∈ U . Whether or not x = limn→∞ xn,
depends only on the topology of X, not on the metric.

Recall that (x)n is Cauchy iff for all ε > 0 there is an N ∈ Z≥0 such that for any m,n ≥ N the distance
d(xn, xm) < ε. Whether or not (xn) is Cauchy depends on the metric, not just on the topology.

We say that (X, d) is complete iff any Cauchy sequence (xn) in it has a limit. Whether or not (X, d) is complete
depends on the metric as well.

We assume that R with the usual metric d(x, y) = |x− y| is complete.

Question 6. a) Show that Rn equipped with either of the metrics d1, d2, d∞ is complete.
b) Set R∞ to be the set of all sequences (x1, x2, . . .) of real numbers all but finitely many of whose terms are zero.

As above, we can equip R
∞ with the metrics d1, d2, d∞. Show that the resulting metric spaces are not complete.

Question 7. Construct a metric on (0, 1) that induces the usual topology on it and that turns it into a complete
metric space. Check that the sequence (xn) with xn = 1/n, n ∈ Z>0 is not Cauchy.

Problems for discussion

For a topological space X set Cb(X,R) to be the space of all real-valued bounded continuous functions X → R.
This is a vector space with respect to pointwise addition and multiplication by real numbers. Define a norm on this
vector space by setting ||f || = supx∈X |f(x)|. Note that in the case X = {1, 2, . . . , n} with the discrete topology the
space Cb(X,R) is nothing but Rn and the norm is the one that we used above to construct the metric d∞.

1. Show that Cb(X,R) is complete.
In a similar way one defines Cb(X,V ) where V = R

n with the usual metric d2, or more generally, any real vector
space with a norm that induces a complete metric (such vector spaces are called Banach). The same argument shows
that the resulting spaces are complete.

2. Now we construct a family of functions fn : [0, 1] → [0, 1]2, n ∈ Z≥0. The 0-th one, f0, is shown on the
blackboard. Suppose we have already constructed fn and that it takes the i-th segment Ii of length

1

9n
to one of the

squares, call it Qi, obtained by cutting [0, 1]2 into 9n equal squares. Then fn+1 will take Ii again to Qi but in such
a way that the resulting curve visits the centres of each of the 9 small equal squares that Qi can be cut into. For
example, we can use a smaller copy of f0.

Show that d(fn(t), fn+m(t)) ≤
√
2

9m
where n,m ∈ Z>0 and d is the d2 metric on the square. Deduce that (fn)

converges to a continuous function f : [0, 1] → [0, 1]2.

3. Shor that every (x, y) ∈ [0, 1]2 is ≤ 1

9n
√
2
away from a point in the image of fm+n,m, n ∈ Z≥0. Deduce using

f = limn→∞ fn that (x, y) is in the closure of the image of f .

4. Show that f is surjective. Is it injective?

In a similar way one constructs continuous surjective mappings [0, 1] → [0, 1]k and R → R
k for all k ∈ Z≥0. Such

maps are called space filling curves. It’s not that one encounters such spaces very often in topology (one doesn’t) but
their existence shows that statements like “Rn is not homeomorphic to R

m unless m = n” or “there is no continuous
injective map R

n → R
m if n > m”, which are intuitively clear, should nevertheless not be taken for granted.
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