
1. Introduction

1.1. From polynomial systems to commutative rings. Algebraic geometry has many sources,

but among them the study of systems of polynomial equations is the most evident one.

Namely, we fix a pair of integers m,n ≥ 1 and consider m polynomials in n variables

P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn) ∈ K[x1, . . . , xn]

over a commutative unital ring K (such as the field of complex numbers C, the field of rational

numbers Q, the ring of rational integers Z, the ring Z/NZ of residues modulo N , or any other

ring or field you like). Then our objective is to describe “the sets of solutions” of the system of

equations (or of congruences modulo N in the case K = Z/NZ)

(P) P1(x1, . . . , xn) = · · · = Pm(x1, . . . , xn) = 0,

or at least some of their properties.

Example. Consider equation (x21+x22)
2+4x21x2−x32 = 0. If you draw the set of solutions on the

real plane, you get a trefoil. It should be clear from your picture (or from explicit equations, to be

generalized later in Bézout’s theorem) that any non-horizontal line passing through and punctured

at the origin O has a unique intersection with your curve, with three exceptions being the tangent

lines (x2 = 0, x2 = ±2x1) at O to three branches at O. This identifies the solutions (other than

O) with the points of the projective line (of lines passing through O) punctured at 3 points (the

tangent lines).

Can you solve the following equation of a quadrifoil: (x21 + x22)
3 − 4x21x

2
2 = 0?

Another point of view suggests that the set of complex solutions of a polynomial equation in two

variables can be visualized as a union of punctured spheres with a finite number of handles. At

some point we shall see, how to calculate the number of handles in local terms.

To make precise what “solution” means, we fix an K-algebra L, i.e., a unital ring homomorphism

K → L, e.g., L = K, and we say that an n-tuple (b1, . . . , bn) ∈ Ln is a L-solution of the system

(P) if P1(b1, . . . , bn) = · · · = Pm(b1, . . . , bn) = 0.

In fact, “the sets of solutions” of the system (P) is a functor on the category of K-algebras, cf.

Exercise 2.3: any unital homomorphism L1 → L2 of K-algebras defines a natural map

{L1-solutions of the system (P)} → {L2-solutions of the system (P)}.

Exercise 1.1. Define this map.

Even if we are interested in the K-solutions of the system (P), it is often helpful to consider the

L-solutions of the system (P) for various K-algebras L.

Examples. 1. We want to know, whether the equation x2 + y2 = n for a given integer n has

Z-solutions. If n ≡ −1 (mod 4) then the equation does not have Z/4Z-solutions. If n < 0 then the

equation does not have R-solutions.

2. When K = R, we can identify the set of R-solutions of the system (P) with the fixed subset

of the complex conjugation acting on the set of C-solutions of the system (P).

It is clear that adding to the system (P) an extra equation of type Q1P1 + · · ·+QmPm = 0 for

some polynomials Q1, . . . , Qm ∈ K[x1, . . . , xn] does not affect the set of L-solutions.

Exercise 1.2. Construct a natural bijection

{L-solutions of the system (P)} ↔ {unital K-algebra homomorphisms A→ L},
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where the K-algebra A is the quotient of the polynomial algebra K[x1, . . . , xn] by the ideal1 gen-

erated by by the polynomials P1, . . . , Pm.

At this point we may forget the initial system (P) and work directly with the K-algebra A.

The following statement, Zorn’s lemma, is equivalent to the axiom of choice under the Zermelo–

Fraenkel axioms of set theory. We can therefore consider itself as an axiom.

Theorem 1.3 (Zorn’s lemma). Suppose every chain (i.e., totally ordered subset) in a partially

ordered set P has an upper bound in P . Then the set P contains at least one maximal element.

By definition, a set P is partially ordered if it is endowed with a binary relation “≤”, which is

reflexive (a ≤ a for any a ∈ P ), transitive (for all a, b, c ∈ P such that a ≤ b and b ≤ c one has

a ≤ c) and antisymmetric (if a ≤ b and b ≤ a for some a, b ∈ P then a = b). A subset T of a

partially ordered set P is called a chain if for any pair of elements a, b ∈ T either a ≤ b or b ≤ a.

Such a set T has an upper bound u in P if t ≤ u for all t in T . An element m of P is called a

maximal element if the set of elements x ∈ P such that m ≤ x consists of the single element m.

Exercise 1.4. Show that (i) any ring 6= 0 has a maximal ideal; (ii) a ring 6= 0, where the ideal 0

is maximal, is a field.

Exercise 1.5 (“Weak Nullstellensatz”). The following conditions on the system (P) are equivalent:

(i) for any K-field L (i.e., a homomorphism K → L) the system (P) has no L-solutions; (ii) the ideal

generated by P1, . . . , Pm is K[x1, . . . , xn]. [Hint. Apply Exercise 1.4 to K[x1, . . . , xn]/(P1, . . . , Pm).]

1.2. From commutative rings to topological spaces. Consider the case where the K-algebra

L is an integral domain (ring in which there are no zero divisors): if bc = 0 in L for some b, c ∈ L
then either b = 0 or c = 0. Then to any unital K-algebra homomorphism ϕ : A → L we may

associate a pair consisting of an ideal p := kerϕ and an embedding of K-algebras A/p ↪→ L.

Exercise 1.6. Check that p := kerϕ is an ideal. Show that this ideal is prime.

Recall, that a prime ideal is a proper ideal whose complement is closed under multiplication.

Exercise 1.7. Show that the following conditions on a proper ideal p in A are equivalent: (i) p is

prime, (ii) if ab ∈ p for some a, b ∈ A, then a ∈ p or b ∈ p, (iii) A/p is an integral domain.

Exercise 1.8. Deduce from Exercise 1.7 that the maximal ideals are prime.

Exercise 1.9. A positive integer n is a prime number if and only if the ideal nZ is a prime ideal

in Z.

Exercise 1.10. Show that for any ring homomorphism f : K → A (sending 1 to 1) the preimage

f−1(p) is prime for any prime ideal p ⊂ L.

So far we dealt with algebra, but now we turn slowly to geometry. Namely, we start defining the

spectra of commutative rings. By definition, the spectrum Spec(A) of a commutative ring A is a

topological space endowed with a sheaf of commutative rings.

The underlying set of Spec(A) is the set of prime ideals of A.

By Exercise 1.10, the topological space of Spec(A) maps to the underlying topological space of

Spec(K).

We consider the elements of A as functions on Spec(A) taking at a point p values in the residue

ring A/p. Namely, a “function” f ∈ A takes at a point p the value f (mod p). In particular, f ∈ A
“vanishes” at p if and only if f ∈ p.

1Recall, that an ideal in a ring A is an additive subgroup in A closed under multiplication by elements of A (i.e.,

an A-submodule); an ideal generated by a subset S ⊂ A is the minimal ideal containing S.
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Exercise 1.11. Show that a “function” f ∈ A vanishes everywhere on Spec(A) if and only if it is

nilpotent, i.e., f r = 0 for an integer r ≥ 1. In particular, the nilpotents in A form an ideal.

[Hint. Apply Zorn’s lemma to the (partially ordered) set of ideals in A containing no element of

type f r for an integer r ≥ 1.]

To see the relation of these functions to the functions you are used to, assume that K is a field

and consider those points p of Spec(A) that the composition K ↪→ A → A/p is an isomorphism.

Then the residue rings of such points are naturally identified with K, so the “functions” f ∈ A can

be considered as usual functions with values in K.

We wish to consider the elements of A as continuous functions on Spec(A). Then the minimal

possible choice for the topology on Spec(A), called the Zariski topology, is to postulate that the

closed subsets are ‘zero loci’ of subsets (equivalently, of ideals) S ⊂ A, i.e.,

Definition. A subset in Spec(A) is closed iff it is of type {p ∈ Spec(A) | p ⊇ S} for some S ⊂ A.

Exercise 1.12. Show that any ring homomorphism induces a continuous map of spectra.

Exercise 1.13. (1) Describe Spec(A) for the following rings A: Z, Z/5Z, Z/21Z, Z(2) (the ring of

2-integer rational numbers, i.e., with odd denominators), C[x], k[x]/(x2) for a field k.

(2) Show that for such rings A any non-zero function on Spec(A) vanishes at a finite number of

points. Is this true for other rings?

Exercise 1.14. Show that the topological spaces of Spec(A) and of Spec(Ared) coincide. (Here

Ared := A/{nilpotents}.)

1.3. Localization. Let A be a unital commutative ring and S ⊂ A r {0} be a multiplicatively

closed subset containing 1, i.e., if s, s′ ∈ S then ss′ ∈ S. Let M be an A-module, i.e., M is an abelian

group endowed with an associative distributive multiplication of A: A ×M → M , (a,m) 7→ am,

such that 1m = m, a(a′m) = (aa′)m, (a+ a′)m = am+ a′m, a(m+m′) = am+ am′.

Exercise 1.15. (1) Consider the following category CM,S : its objects are morphisms of A-

modules M → N such that the multiplication by elements of S on N is invertible; the

morphisms are morphisms of A-modules. Show that this category admits an initial object,

denoted by S−1M . Namely, S−1M can be described as equivalence classes of “fractions”

m/s for all m ∈ M and s ∈ S, where m/s ∼ m′/s′ if (ms′ −m′s)s′′ = 0 for some s′′ ∈ S.

Show that ker[M → S−1M ] =
⋃
s∈S ker(s|M ).

(2) Consider the following category: its objects are morphisms of A-algebras A→ B such that

the images of elements S are invertible in B; the morphisms are morphisms of A-algebras.

Show that (i) this category admits a forgetful functor to the category CA,S , (ii) this category

admits an initial object ( 6= 0), (iii) the forgetful functor to CA,S respects the initial objects.

Exercise 1.16. Let A be a commutative ring.

(1) Describe the closed points of Spec(A).

(2) Show that for any element f ∈ A the localization homomorphism A → A[1/f ] := S−1A

identifies Spec(A[1/f ]) with an open subset of Spec(A), where S = {1, f, f2, f3 . . . }.
(3) Let {fi}i∈I be a collection of elements of the ring A. Show that the open sets Spec(A[1/fi])

cover Spec(A) if and only if the elements fi generate the unit ideal. Deduce that the

topological space of Spec(A) is quasicompact.

(4) Show that the following conditions are equivalent: (i)Ared is an integral domain, (ii) Spec(A)

is (topological) closure of a (unique) point, (iii) any non-empty open subset is dense in

Spec(A), i.e., intersection of any pair of non-empty open subsets is non-empty.
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1.4. Presheaves and sheaves. Definition. 1. A presheaf (of sets) on a topological space X

is a contravariant functor F on the category of open subsets of X, cf. footnote 2 in §2, (to the

category of sets). The elements of F(U) are called sections of F over U .

2. A presheaf F is called a sheaf if its sections are determined locally, i.e., for any open U , any

covering U =
⋃
i Ui and any compatible system of sections si ∈ F(Ui): si|Ui∩Uj = sj |Ui∩Uj for all i

there exists a unique section s ∈ F(U) such that s|Ui = si.

2. Categories

By definition, a category C consists of objects and morphisms (or arrows) between objects. The

objects form a class, denoted by Ob(C). For each pair A,B ∈ Ob(C) the morphisms from A to

B form a set, denoted by HomC(A,B) (and sometimes by C(A,B)). For each object A ∈ Ob(C)
a morphism, calles the identity, idA ∈ C(A,A) is fixed. (In particular, the set of endomorphisms

C(A,A) is not empty.) For each triple A,B,C ∈ Ob(C) the map of sets, called the composition,

HomC(B,C) × HomC(A,B)
◦−→ HomC(A,C) is fixed. The composition should be associative and

compatible with the identity morphisms, i.e., the diagram

C(C,D)× C(B,C)× C(A,B)
id×◦−→ C(C,D)× C(A,C)

↓ ◦ × id ↓ ◦
C(B,D)× C(A,B)

◦−→ C(A,D)

is commutative for any quadruple A,B,C,D ∈ Ob(C) and ϕ ◦ idA = idB ◦ϕ = ϕ ∈ C(A,B) for any

ϕ ∈ C(A,B). A morphism ϕ ∈ C(A,B) is called isomorphism if there exists ψ ∈ C(B,A) such that

ψ ◦ ϕ = idA and ϕ ◦ ψ = idB.

You have already met (or heard about) many categories: of sets, of topological spaces, of groups,

of rings (satisfying some extra conditions, like associativity and/or commutativity, etc.), of modules

over a ring (e.g., abelian groups are Z-modules; vector spaces over a field k are k-modules), of certain

subsets of a given set (e.g., of open subsets of a topological space; such categories correspond to

partially ordered sets).2

Also, given a category C one can construct new categories, e.g., the opposite category Cop:

Ob(Cop) := Ob(C), Cop(X,X ′) := Cop(X ′, X) and the composition is defined in an evident way.

Each object X of C gives rise to the category CX of objects over X: its objects are morphisms

Y
ϕ−→ X in C and CX(Y

ϕ−→ X,Y ′
ϕ′
−→ X) consists of morphisms ψ ∈ CX(Y, Y ′) such that

ϕ = ϕ′ ◦ ψ.

An object A is called initial (resp., final) if any object admits a unique morphism from (resp.,

to) A.

Exercise 2.1. For each of the above categories find initial and final objects, whenever possible.

Let C1 and C2 be categories. A (covariant) functor F : C1 → C2 associates an object F(X) of C2
to each object X of C1 and a morphism F(ϕ) : F(X)→ F(X ′) in C2 to each morphism ϕ : X → X ′

in C1. We require that F respects the identity morphisms and the compositions: F(idX) = idF(X)

and F(ϕ′) ◦ F(ϕ) = F(ϕ′ ◦ ϕ) for any pair of composable morphisms ϕ,ϕ′ in C1. A contravariant

functor from C1 to C2 is a covariant functor from the opposite category Cop1 to C2.

Exercise 2.2. Show that any functor preserves isomorphisms.

2 This is an example of a partially ordered set. Conversely, to any partially ordered set (P,≤) one associates the

following set, indexed by the elements α ∈ P , of the subsets of P : Sα := {x ∈ P | x ≤ α}, so α ≤ α′ iff Sα ⊆ Sα′ .

The category of a partially ordered set is described as follows: its objects are elements of P and Hom(α, β) consists

of a single element if α ≤ β and it is empty otherwise.
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Exercise 2.3 (Representable functors). Let C be a category and X be an object of C. Show that

correspondence Y 7→ C(X,Y ) gives rise to a functor from C to the category of sets.

Let C1 and C2 be categories and F1,F2 : C1 → C2 be a pair of functors. A natural transformation

between the functors F1 and F2 is the collections of morphisms ψX ∈ C2(F1(X),F2(X)), one for

each object X ∈ C1, commuting with the morphisms in C1, i.e., the following diagram commutes

F1(X)
ψX−→ F2(X)

↓ F1(ϕ) ↓ F2(ϕ)

F1(X
′)

ψX′−→ F2(X
′) for any morphism ϕ : X → X ′.

Exercise 2.4. Let C be a small category, i.e., its objects form a set. Let C′ be another category.

Check that the functors from C to C′, with the natural transformations as morphisms, form a

category.
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