Листок 3: Нетеровы кольца, кольца частных, целые расширения

Задачи по коммутативной алгебре - матфак ВШЭ надо сдать до 24.10.2012 включительно

- **1** Пусть M нетеров A-модуль, а $u: M \to M$ гомоморфизм. Докажите, что если u сюръективен, то u изоморфизм. (Указание: рассмотреть последовательность $Ker(u^i)$).
- **2** Докажите, что если A нетерово, то кольцо формальных степенных рядов A[[X]] тоже нетерово (можно вдохновляться доказательством теоремы Гильберта о базисе, т.е. нетеровости A[X], используя "младшие" коэффициенты степенных рядов вместо старших).
- 3 Пусть M-A-модуль. Простой идеал \mathfrak{p} называется ассоциированным с M, если существует такой $x\in M$, что $\mathfrak{p}=Ann(x)$ (Ann(x)- это $\{f\in A|fx=0\}$, аннулятор x). Что можно сказать о подмодуле M, порожденном x? Покажите, что если A нетерово, то любой ненулевой A-модуль имеет ассоциированные простые идеалы. (Указание: рассмотреть семейство идеалов, являющихся аннуляторами элементов M.)
- 4 Пусть M ненулевой нетеров модуль над нетеровым кольцом. Покажите, что существует последовательность подмодулей $M=M_0\supset M_1\supset\ldots\supset M_k=0$, такая, что фактормодули M_i/M_{i+1} изоморфны A/\mathfrak{p}_i для некоторых простых \mathfrak{p}_i .
- **5** (это проверка деталей утверждения, сформулированного на лекции). Проверьте, что любой идеал в кольце частных $S^{-1}A$ вида $S^{-1}I$, где I идеал в A. Покажите, что имеется биекция между множеством простых идеалов в $S^{-1}A$ и множеством простых идеалов в A, не пересекающихся с S, непрерывная в топологии Зариского.
- **6** Пусть S множество степеней некоторого элемента $x \in A$. Когда кольцо $S^{-1}A$ нулевое? Выведите отсюда еще одно доказательство того факта, что нильрадикал является пересечением всех простых идеалов.

- 7 Пусть A кольцо и M A-модуль. Покажите, что если $M_{\mathfrak{m}}=0$ для всех максимальных идеалов $\mathfrak{m}\subset A$, то M=0.
- 8 Пусть $f: M \to N$ гомоморфизм A-модулей. Покажите эквивалентность следующих условий: (1) f сюръективен; (2) для всех простых идеалов $\mathfrak{p}, f_{\mathfrak{p}}: M_{\mathfrak{p}} \to M_{\mathfrak{p}}$ сюръективен; (3) для всех максимальных идеалов $\mathfrak{m}, f_{\mathfrak{m}}: M_{\mathfrak{m}} \to M_{\mathfrak{m}}$ сюръективен. То же верно и для инъективности.
- 9 Пусть A кольцо и M-A-модуль. Носитель M это подмножество Spec(A), состоящее из таких идеалов \mathfrak{p} , что $M_{\mathfrak{p}} \neq 0$. Покажите, что если M конечно порожден, то его носитель замкнут в топологии Зариского (Supp(M) = V(??)). Удобно для начала разобрать случай, когда M порожден одним элементом (что можно тогда сказать об M?)
- **10** Пусть $A \subset B \subset C$ кольца. Покажите, что если C цело над B, а B цело над A, то C цело над A.
- 11 Пусть кольцо B цело над A, $\mathfrak{q}_1 \subset \mathfrak{q}_2 \subset B$ простые идеалы. Покажите, что если $q_1 \cap A = q_2 \cap A$, то $q_1 = q_2$ (можно свести к случаю, когда $q_1 \cap A = q_2 \cap A$ максимален, как в доказательстве сюръективности отображения спектров из лекций).

Целое замыкание A в B - это множество элементов B, целых над A. Оно является подкольцом B. Говорят, что область целостности целозамкнута, если она целозамкнута в своем поле частных. Например, любое факториальное кольцо целозамкнуто (проверить!)

- 12 Покажите, что $\mathbf{Z}[i]$ область главных идеалов, а значит, факториальна, и в частности целозамкнута. Указание: придумайте аналог деления с остатком в $\mathbf{Z}[i]$.
 - **13** Целозамкнуто ли $\mathbf{Z}[\sqrt{5}]$?
- **14** Целозамкнуто ли кольцо $\mathbf{C}[x,y]/(x^2-y^3)$? Опишите его целое замыкание (в поле частных).