Задачи для семинара № 7 Геометрия-1 Матфак ВШЭ, осень 2014

Аффинные и ортогональные замены базиса и координат, ортогональные инварианты плоских кривых второго порядка

Задача 1. На плоскости даны две системы координат Oxy и O'x'y', связанные формулами перехода

$$x = 3x' - 4y' - 5$$
, $y = -x' + 2y' + 1$.

- 1) Найти координаты начала второй системы и единичных векторов её осей относительно первой системы.
- 2) Найти координаты относительно системы Oxy вектора диагонали параллелограмма, образованного единичными векторами осей системы O'x'y'.
- 3) Выразить координаты x', y' через координаты x, y.
- 4) Какие координаты в системе координат Oxy имеет единичная точка E' = (1,1) системы координат O'x'y'?
- 5) Написать уравнения осей O'x' и O'y' в системе координат Oxy.
- 6) Написать уравнение прямой 2x 3y + 1 = 0 в системе координат O'x'y'.

Задача 2. Написать формулы преобразования координат на плоскости, принимая за новые оси O'x' и O'y' прямые x-3y+2=0 и 3x+2y-1=0 соответственно, а за единичную точку новой системы (то есть точку с координатами $x'=1,\ y'=1)$ — точку (2,3).

Задача 3. Даны точка (0,2) пересечения медиан треугольника и уравнения двух его сторон 5x - 4y + 15 = 0 и 4x + y - 9 = 0. Найти уравнение третьей стороны треугольника. Указание: примените подходящую замену координат.

Задача 4. Задано преобразование прямоугольных коорднат на плоскости от Oxy к O'x'y'

$$x = \frac{1}{\sqrt{5}}x' + \frac{2}{\sqrt{5}}y' + 1, \quad y = -\frac{2}{\sqrt{5}}x' + \frac{1}{\sqrt{5}}y' - 2.$$

Найти формулы обратного перехода от системы O'x'y' к системе Oxy.

Задача 5. Составить каноническое уравнение кривой, если заданы её инварианты

$$I_1 = 7$$
, $I_2 = 10$, $I_3 = -20$.

Что это за кривая?

Задача 6. Доказать, что условия $I_1^2 = 4I_2$, $I_1I_3 < 0$ необходимы и достаточны для того, чтобы уравнение кривой второго порядка определяло окружность.

Задача 7. Привести условия на инварианты, необходимые и достаточные для того, чтобы кривая второго порядка являлась параболой. Выразить через инварианты её фокальный параметр.

Задача 8. Докажите, что уравнение второго порядка задаёт равностороннюю гиперболу тогда и только тогда, когда $I_1=0,\,I_3\neq 0.$

Задача 9*. Какие условия на инварианты необходимы и достаточны для того, чтобы уравнение второго порядка задавало действительный эллипс? Выразите через инварианты I_1 , I_2 , I_3 длины a и b полуосей эллипса и найдите его площадь S.

Задача 10^{*}. С помощью инвариантов выразите необходимое и достаточное условие того, что уравнение второго порядка задает гиперболу, лежащую в остром угле, образованном её асимптотами.