Прикладные методы анализа. Листок 4. Аналитическое представление и ПРЕОБРАЗОВАНИЕ ФУРЬЕ ОБОБЩЕННЫХ ФУНКЦИЙ

Обязательные задачи: 1,2,3а-в,; 4а,6,г,д,е; 5, 6а,6в. Срок сдачи - 20 ноября.

- 1. Пусть $z=x+iy\equiv re^{i\phi}$, где r>0 (при $z\neq 0$) и $-\pi<\phi\leq\pi$. Обозначим $\phi=\arg z$. Определим $\ln z$ как $\ln z = \ln |z| + i \arg z$. Верно ли, что $\ln z^2 = 2 \ln z$ и $\ln |z|^2 = \ln z + \ln \overline{z}$.
- 2. Определим обобщенные функции $\ln(x+i0)$ и $\ln(x-i0)$ из $\mathcal{S}'(\mathbb{R}) \subset \mathcal{D}'(R)$ как пределы локально интегрируемых функций $\ln(x \pm i\varepsilon)$ переменной x при $\varepsilon \to 0$. Покажите, что
 - a) $\ln(x+i0) + \ln(x-i0) = 2\ln|x|$,
- 6) $\ln(x+i0) \ln(x-i0) = 2\pi i\theta(-x)$.
- B) $(\ln(x \pm i0)' = \frac{1}{x + i0},$
- 3. Найдите аналитические представления обобщенных функций на прямой (т.е., представьте обобщенные функции в виде разности предельных значений функции, аналитической в верхней полуплоскости ${\rm Im}\,z>0$ и функции, аналитической в нижней полуплоскости Im z < 0):

 - a) $\delta(x)$; 6) $(x \pm i0)^{-1}$;
- B) 1/x;

- Γ) $\ln |x|$;
- μ) $\theta(x)$.
- 4. Найти Фурье-образы обобщенных функций

a)
$$\frac{e^{ipx}}{x^2 + a^2}$$
; 6) $\frac{\sin ax}{x}$;

$$6) \frac{\sin ax}{x}$$

$$\mathbf{B}) \; \theta(x)$$

$$\Gamma$$
) $\delta(x-a)$

д)
$$(x \pm i0)^{-1}$$

e)
$$\frac{1}{x}$$
;

а)
$$\frac{e^{ipx}}{x^2 + a^2}$$
; б) $\frac{\sin ax}{x}$; в) $\theta(x)$;
г) $\delta(x - a)$; д) $(x \pm i0)^{-1}$; е) $\frac{1}{x}$; ж)* $\ln(x \pm i0)$.

- 5. а) Найдите фундаментальное решение оператора теплопроводности $\frac{\partial}{\partial t} \frac{\partial^2}{\partial x^2}$ (т.е., решение уравнения $u_t' u_{xx}'' = \delta(t)\delta(x)$, равное нулю при t < 0. Указание: примените преобразование Фурье по x.
 - б) Найдите функцию Грина задачи Коши $u_t' u_{xx}'' = f(x,t)$ при $t>0; \ u(x,0)=0.$
- 6. Пусть a(t) непрерывная функция.
 - а) Покажите, что задача Коши u' + a(t)u = f(t), $u(0) = u_0$, где $u(t) \in C^1([0, +\infty)$ эквивалентна задаче нахождения обобщенной функции u(t) с носителем на полупрямой $[0, +\infty)$, удовлетворяющей уравнению

$$u' + a(t)u = f(t)\theta(t) + u_0\delta(t);$$

- б)* Переформулируйте аналогичным образом задачу Коши для линейного неоднородного дифференциального уравнения *п*-го порядка.
 - в) Используйте результаты задач 26) и 3а) для нахождения распределения температуры u(x,T) в момент времени T, считая, что в момент времени t=0 она распределена по закону $u(x,0)=e^{ax^2},$ и меняется со временем согласно уравнению теплопроводсти $u'_t - u''_{xx} = 0$.
- 7. Найдите пределы $\lim_{\lambda\to\pm\infty}\frac{e^{i\lambda x}}{x}$ в смысле обобщенных функций \mathcal{S}' , где $\frac{e^{i\lambda x}}{x}$ понимается в смысле главного значения.
- 8. Пусть f(x) локально интегрируемая функция, растущая при $x \to \infty$ не быстрее полинома, $\hat{f}(\xi)$ – ее преобразование Фурье. Тогда аналитическое представление $\hat{f}(\xi)$ можно получить с помощью двух преобразований Лапласа. Используйте этот прием для получения аналитического представления преобразования Фурье функций f(x) = xu f(x) = |x|.