Листок 6: примарное разложение, размерность и т.п.

Задачи по коммутативной алгебре - матфак ВШЭ надо сдать до 19.12.2014 включительно

- 1 Пусть M модуль над нетеровым кольцом A. Докажите, что элемент $m \in M$ нулевой, если его образ нулевой в M_P для всех $P \in Ass(M)$. Докажите, что гомоморфизм $f: M \to N$ инъективен тогда и только тогда, когда индуцированное отображение $f_P: M_P \to N_P$ инъективно для всех $P \in Ass(M)$ (замечание: по сравнению с критериями из листка 4 это некоторый прогресс, так как Ass(M) конечное множество).
- **2** Покажите, что $Ass(M) \subset Supp(M)$, и что минимальные элементы в Ass(M) и Supp(M) совпадают (см. определение носителя Supp(M) в листке 4).
- **3** Докажите, что нетерово кольцо факториально, если его неприводимые элементы просты, т.е. порождают простые идеалы. Пусть A произвольное нетерово кольцо и $a=up_1^{e_1}\dots p_k^{e_k}$, где $a\in A, u$ обратим, а p_i попарно различные простые элементы. Покажите, что $(a)=\cap_{i=1}^k(p_i^{e_i})$ минимальное примарное разложение.
- 4 Докажите, что нетерово кольцо факториально тогда и только тогда, когда все минимальные простые идеалы, содержащие некоторый данный элемент кольца, являются главными.
- **5** Пусть K алгебраически замкнутое поле, A, B целостные K-алгебры. Докажите, что в $A \otimes_K B$ тоже нет делителей нуля. Указание: достаточно показать, что их нет в $A \otimes_K Frac(B)$, для чего можно попробовать воспользоваться задачей из листка 4, выбрав K-базис в A и рассматривая ab=0 как систему уравнений на координаты.
- **6** Пусть K поле, A, B целостные конечно порожденные K-алгебры. Докажите, что $dim(A \otimes_K B) = dim(A) + dim(B)$ (т.е. размерность произ-

ведения алгебраических множеств равна сумме размерностей; воспользуйтесь леммой Нетер).

- 7 Пусть $B = A[x_1, \dots x_n]$ кольцо многочленов над кольцом A и $Q_0 \subset Q_1 \subset \dots \subset Q_k$ цепочка строго вложенных простых идеалов в B, причем для любого i $Q_i \cap A = P$. Покажите, что $k \leq n$.
- **8** Пусть $R = \mathbf{C}[xu, xv, yu, yv] \subset \mathbf{C}[x, y, u, v]$. Найдите размерность R и представьте R как целое расширение подкольца A, изоморфного кольцу многочленов (укажите алгебраически независимые элементы, порождающие A над \mathbf{C}).

Следующие две задачи - это "теорема о спуске" для плоских расширений колец.

- 9 Пусть A область целостности и B плоская A-алгебра, $P \subset A$ простой идеал, а Q такой простой идеал в B, что его ограничение на A это P . Покажите, что существует такой простой идеал Q', содержащийся в Q, что его ограничение на A нулевое (вопрос-указание: каким специальным свойством обладают элементы, содержащиеся в минимальных простых идеалах?)
- 10 Пусть S некоторая R-алгебра, N S-модуль, M R-модуль. Покажите, что $N \otimes_R M \cong N \otimes_S (M \otimes_R S)$. Выведите отсюда, что свойство быть плоским модулем сохраняется при замене базы, затем выведите "теорему о спуске" из предыдущей задачи.
- 11 Пусть (A, \mathfrak{m}) локальное нетерово кольцо. Покажите, что размерность A это наименьшее число d, для которого существует набор элементов $x_1, \ldots, x_d \in \mathfrak{m}$ с $\mathfrak{m}^s \subset (x_1, \ldots, x_d)$ для s >> 0. (Скорее всего, похожее утверждение было на лекции; надо объяснить, откуда оно берется, сославшись на какую-то из основных теорем).
- 12 Покажите, что если $(A, \mathfrak{m}) \to (B, \mathfrak{n})$ локальный (т.е. отображающий \mathfrak{m} в \mathfrak{n}) гомоморфизм нетеровых локальных колец, то $dim(B) \leq dim(A) + dim(B/\mathfrak{m}B)$.

Указание: рассмотрите системы параметров в A и в $B/\mathfrak{m}B$ и воспользуйтесь предыдущей задачей.

13 Покажите, что в предыдущей задаче имеет место равенство, если B плоское над A .