Листок 2. 3 февраля 2015

- 3adaчa~1. Доказать (локальную) единственность интегрального многообразия вполне интегрируемого (т.е. удовлетворяющего условию $\alpha \wedge d\alpha = 0$, для 1-формы α , задающей поле) поля гиперплоскостей.
- Задача~2. Пусть поле гиперплоскостей локально задано 1-формой $\alpha = fdg$ для некоторых функций f и g. Докажите, что это поле интегрируемо. Верно ли, что любое интегрируемое поле гиперплоскостей глобально задается такой 1-формой?
- $3a\partial a$ ча 3. Вычислить ω^n для формы $\omega = dp_1 \wedge dq_1 + ... + dp_n \wedge dq_n$, $(p_1, ..., p_n, q_1, ..., q_n)$ координаты на \mathbb{R}^{2n} .
- $3a\partial a$ ча 4. Доказать, что косые 2-формы $\omega_1, \omega_2 \in \Lambda^2(V)$ на конечномерном векторном пространстве V эквивалентны (то есть $\omega_1 = A^*\omega_2$ для некоторого $A \in Aut(V)$) если и только если dim ker ω_1 = dim ker ω_2 .
- $3a\partial a ua$ 5. Для стандартной симплектической структуры $\omega = p_1 \wedge q_1 + ... + p_n \wedge q_n$ на \mathbb{R}^{2n} найдите матрицу оператора Ω , такого что $\omega(u,v) = \langle \Omega u,v \rangle$. Здесь $\langle u,v \rangle = \sum u_k v_k$ евклидово скалярное произведение на \mathbb{R}^{2n} .
- 3adaча 6. Оператор, действующий на симплектическом пространстве, называется симплектическим, если он сохраняет симплектическую структуру. Найдите условия симплектичности матрицы оператора для стандартного симплектического векторного пространства \mathbb{R}^{2n} .
- $\it Задача$ 7. Найдите размерность симплектической группы $\it Sp(V)$.
- 3adaчa 8. Два подпространства L_1, L_2 симплектического пространства (V, ω) назовем симплектически эквивалентными, если $L_1 = AL_2$ для некоторого симплектического оператора A. Найдите число симплектически неэквивалентных подпространств размерности l в симплектическом пространстве размерности 2n.
- 3adaчa 9. При каком условии на матрицу оператора A подпространство, заданное условием p = Aq, является лагранжевым в стандартном симплектическом пространстве с симплектическими координатами $p = (p_1, ..., p_n), q = (q_1, ..., q_n)$?