Geometry and Dynamics Semina	r, Broderick Causley

Poncelet's Closure Theorem: Let C and D be two plane conics. If it is possible to find, for a given n > 2, one n-sided polygon that is simultaneously inscribed in C and outscribed about D (all of its edges are tangent to D), then it is possible to find infinitely many of them. Each point of C is a vertex, and each point of D is a tangency of one such polygon.

1.	Consider a circle A of radius $2\sqrt{2}$ centered at $(0,0)$, and cricle B of radius	1 centered
	at $(1,1)$. Prove that there does not exist any triangles which are inscribed	in A and
	outscribed about B. {Hint: use line $y = x$ to consider creating an isosceles	triangle.}

Assume a **billiard table** is a convex domain with a smooth boundary cruve F. A **caustic** is a curve f inside a billiard table with the following property: if a segment of a billiard trajectory is tangent to f, then so is each reflected segment. We discussed recovering boundary curve F from caustic f using a $string\ construction$: wrap a closed nonelastic string around f, pull it tight at a point, and move this point around f to obtain a curve F'.

 $\label{limit} Nice\ references: \ https://www.math.psu.edu/tabachni/prints/grid.pdf \\ \ http://www.math.hardvard.edu/~knill/oldinterests/stringconf/triangle.pdf$

2.	Instead of a smooth convex caustic f , consider we had any convex polygon. We consider
	a string construction with string length k . As we let k approach infinity, what shape of
	curve F' do we approach?

Here are some (very!) interesting dynamical systems videos. **Duhem's Bull** is the 5^{th} video.

3. http://www.youtube.com/playlist?list=PLelIK3uylPMHTEZ0hEx3PshdSx6awKmxa