Задачи для семинара № 22 Геометрия-1 Матфак ВШЭ, осень 2014 - весна 2015

Геометрия трёхмерных сфер и окружности Вилларсо

Рассмотрим трёхмерную сферу единичного радиуса $\mathbb{S}^3 \subset \mathbb{R}^4 \cong \mathbb{C}^2$. Пусть x, y, z, t — координаты в \mathbb{R}^4 , а u = x + iy, v = z + it — соответствующие координаты в \mathbb{C}^2 . Обозначим через d(p,q) сферическое расстояние между точками p u q на сфере, то есть угол между соответствующими радиус-векторами.

Задача 1. Докажите, что $\cos d((u_1, v_1), (u_2, v_2)) = \operatorname{Re}(u_1 \bar{u}_2 + v_1 \bar{v}_2).$

Задача 2. Рассмотрим два действия группы \mathbb{R} на \mathbb{S}^3 , заданные формулой $t\cdot(u,v)=(e^{it}u,e^{\pm it}v)$. Доказать, что а) орбиты этих действий - большие окружности сферы; б) эти два действия изометричны, то есть сохраняют расстояние между точками; в) если C и C' две орбиты первого (или второго) действия, то для любых точек $n,m\in C$ верно равенство d(n,C')=d(m,C')=d(C,C'); г) если для $m\in C$ и $m'\in C'$ верно d(m,m')=d(C,C'), то большая окружность, проходящая через m и m', пересекает C и C' под прямым углом.

Это приводит нас к следующему определению: две большие окружности C и C' сферы \mathbb{S}^3 называются параллельными в смысле Клиффорда (обозначается $C \parallel C'$), если расстояние d(m,C') от точки $m \in C$ до C' не зависит от выбора точки m.

Пусть C большая окружность, обозначим тогда через \bar{C} плоскость, такую, что $C = \bar{C} \cap \mathbb{S}^3$, а через C^{\perp} большую окружность $\bar{C}^{\perp} \cap \mathbb{S}^3$.

Задача 3. Рассмотрим множество $C_{\alpha}=\{n\in\mathbb{S}^{3}|d(n,C)=\alpha\}$. Доказать, что $C_{0}=C,\,C_{\frac{\pi}{2}}=C^{\perp},\,C_{\pi-\alpha}=C_{\alpha},\,C_{\frac{\pi}{2}-\alpha}=C_{\alpha}^{\perp}$. Доказать, что при $\alpha\in(0,\frac{\pi}{2})$ множество C_{α} представляет из себя тор. (Указание: достаточно рассмотреть большую окружность v=0.)

Задача 4. Доказать, что для любой большой окружности C, любого значения $\alpha \in (0, \frac{\pi}{2})$ и любой точки $m \in C_{\alpha}$ найдутся ровно две большие окружности C' и C'', проходящие через m и параллельные C в смысле Клиффорда. Выведите отсюда, что отношение параллельности в смысле Клиффорда не транзитивно: $C' \parallel C$, $C'' \parallel C$, но $C' \not \parallel C''$. (Указание: достаточно рассмотреть удобную большую окружность C и точку m.)

Для любой большой окружсности C определим две подругуппы G_C^\pm группы изометрий сферы следующим образом. Если C'- большая окруженость v=0, то $G_{C'}^\pm$ — это подгруппы из элементов группы изометрий $\{(u,v)\mapsto (e^{it}u,e^{\pm it}v)|t\in\mathbb{R}\}$. Для произвольной большой окружсности C существует изометрия T, переводящая C в C', тогда $G_C^\pm=T^{-1}\circ G_{C'}^\pm\circ T$. Изометрия T не единственна, но легко проверить, что от её выбора ничего не зависит.

Теперь мы можем дать следующее определение: большие окружности C и C' называются параллельными в первом (или втором) смысле (обозначается $C \parallel C'$ или $C \parallel C'$ соответственно), если C' является орбитой группы G_C^+ (или G_C^-).

Задача 5. Доказать, что а) \parallel и \parallel являются отношениями эквивалентности; б) если $C \parallel C'$, то или $C \parallel C'$, или $C \parallel C'$; в) через каждую точку $m \in \mathbb{S}^3$ проходят две больших окружности, параллельных C, одна параллельна в первом смысле, а другая — во втором, причём они различны, если $m \notin C \cup C^{\perp}$.

Задача 6. Пусть C — большая окружность, $m \notin C \cup C^{\perp}$, а C' и C'' — большие окружности, паралелльные C и проходящие через m. Пусть $m_0 \in C$ такая точка, что $d(m_0, m) = d(m_0, C) = \alpha$, большая окружность D проходит через m и m_0 , а P — большая 2-сфера, содержащая m и C. Доказать, что D

ортогональна C' и C'', большая 2-сфера P составляет с C' и C'' угол α , а угол между C' и C'' равен 2α .

Задача 7. Докажите, что тор C_{α} инвариантен при вращениях в плоскостях \bar{C} и \bar{C}^{\perp} . Орбиты при соответствующих вращениях — меридианы и параллели этого тора. Докажите, что окружности $C' \stackrel{+}{\parallel} C$ и $C'' \stackrel{-}{\parallel} C$, проходящие через точку на C_{α} , полностью лежат на этом торе. Из задачи 6 выведите, что два семейства таких окружностей пересекают меридианы и параллели C_{α} под одним и тем же углом α .

Задача 8. Рассмотрим стереографическую проекцию сферы \mathbb{S}^3 из северного полюса $n \in \mathbb{S}^3$ на пространство \mathbb{R}^3 со стандартными координатами x, y и z. Выберем большую окружность $C \in n$, такую, что при стереографической проекции $C \setminus \{n\}$ переходит в ось z, а большая окружность C^\perp переходит в единичную окружность в плоскости x, y. Докажите, что C_α переходит в тор вращения C, при этом параллели, меридианы и два семейства окружностей, параллельных C, переходят в параллели, меридианы и два семейства окружностей Вилларсо тора вращения.

Задача 9. Из задачи 7 выведите, что окружности Вилларсо пересекают меридины тора вращения под одним и тем же углом α , а из задачи 6 выведите, что если C' и C'' — две окружности из разных семейств окружностей Вилларсо, то C'' пересекает любую сферу, содержащую C', под тем же уголом α . Задача 10. Доказать, что а) если C, C' и C'' — три такие большие окруж-

Задача 10. Доказать, что а) если C, C' и C'' — три такие большие окружности, что $C' \stackrel{+}{\parallel} C, C'' \stackrel{-}{\parallel} C$ и d(C',C) = d(C'',C), то $C' \cap C'' = \varnothing$; б) если C, C' две большие окружности, такие, что $C' \stackrel{+}{\parallel} C$, точки $m,n \in C$ и $m' \in C'$, ,большая окружность D проходит через m и m', а большая окружность D' проходит через n и $D' \stackrel{-}{\parallel} D$, то $D' \cap C' = \{n'\}$ и mnn'm' есть параллелограмм Клиффорда, то есть d(m,m') = d(n,n'), d(m,n) = d(m',n') и все четыре угла в точках m,m',n,n' равны.