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LECTURE VI

1. In this lecture we continue the discussion of the physics behind the Schwarzschild geometry.

Namely we find here the so called Oppenheimer–Snyder solution, which describes the collapse

process of a spherically symmetric, non–rotating body into the black hole.

Consider a static star (a ball filled with a matter) surrounded by empty space. We will derive the

metric describing such a situation in the next lecture. The star is static due to an internal pressure

until some moment of time t = 0 and then the pressure is switched off. Say before t = 0 there were

some thermonuclear processes inside this star, which were producing the internal pressure. But by

the moment t = 0 the entire thermonuclear fuel was used out.

To model the collapse process after t = 0 we assume that inside the star there is a homogeneous

pressureless dust. Also we assume that the original star was ideal ball with ideal spherical surface

and that the collapse process goes in such a way that homogeneity of the matter inside the star

and the spherical symmetry is never violated. This is a highly unstable situation because any its

perturbation violating these symmetries will grow in time due to the tidal forces. We neglect such

perturbations.

Thus, inside the ball the energy momentum tensor is Tµν = ρ(τ)uµuν , where the density ρ(τ) is

just a function of the proper time τ because of the spatial homogeneity. Outside the ball we have

vacuum, Tµν = 0.

Such a massive ball of matter should create a spherically symmetric and asymptotically flat

gravitational field in vacuum. Thus, due to Birkhoff theorem outside the ball the metric has to

be the Schwarzschild one. Any violation of the spherical symmetry will lead to time–dependent

gravitational fields in vacuum, i.e. to a creation of gravitational waves, which are discussed in the

lectures IX and X. Neglecting such processes is exactly the approximation that we use here.

To give an intuitive explanation why spherically symmetric collapse does not create gravitational

radiation, let us discuss the following situation. Consider a ball which is electrically charged and

the charge is homogeneously distributed over its volume. Suppose now that for some reason this

ball rapidly shrinks in such a way that the homogeneity and spherical symmetry are respected. It

is not hard to see that independently of the radius of the ball it creates the same Coulomb field

outside itself. This is related to the uniqueness of the Coulomb solution of the Maxwell equations,

which was mentioned in the lecture IV.

Thus, the magnetic field outside the ball is vanishing and such an accelerated motion of the

charge does not create an electromagnetic radiation. The point is that to have a radiation there

should be at least dipole moment, which is changing in time, while in the case of the ball all

momenta are zero with respect to its center. It happens that to have a gravitational radiation, as

we will see in the lectures IX and X, there should be even quadruple moment, which changes in

time. Dipole moment is not enough. Also from the Newton’s gravitation we know that an ideal

spherical massive ball creates the same potential outside itself independently of its radius. The

form of the potential just depends on the mass of the ball. In general relativity the situation is

similar due to the Birkhoff’s theorem.
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2. All in all, the metric outside the ball is

ds2+ =
(
1− rg

r

)
dt2 − dr2

1− rg
r

− r2 dΩ2. (1)

Here rg = 2κM , where M is the mass of the ball, which remains constant during the collapse

process, because of the absence of the radiation. Intuitively it should be clear that then there is no

energy which fluxes away to infinity with the radiation and the energy of the ball remains constant.

This metric is valid outside of the surface of the ball Σ, which radially shrinks down during

the collapse process. Then the world–hypersurface of Σ is zµ(τ) = [T (τ), R(τ)] and at every given

time slice it is an ideal sphere. (Note that in this lecture we denote by the same Σ both the

three–dimensional world–hypersurface and its two–dimensional time–slices.) Hence, Σ occupies all

the values of the spherical angles θ and φ. Here R(τ) decreases as the proper time τ goes by. The

initial value of the R(τ0) = R0 is grater than rg. Otherwise we would have had a black hole rather

than a star at the initial stage.

Inside the ball we have a spatially homogeneous metric whose time–slices are compact and are

decreasing in size as time goes by. The suitable metric is:

ds2− = dτ2 − a2(τ)
[
dχ2 + sin2 χdΩ2

]
, dΩ2 = dθ2 + sin2 θ dφ2. (2)

We discuss the physics and the origin of such metrics in the lecture XI in grater details. Its spatial

section dτ = 0 is the three–sphere, whose metric is a2(τ)
[
dχ2 + sin2 χdΩ2

]
, χ ∈ [0, π]. The radius

of the three–sphere a(τ) is decreasing as the time τ goes by.

Thus, we have

gττ = 1, gχχ = −a2, gθθ = −a2 sin2 χ, and gφφ = −a2 sin2 χ sin2 θ. (3)

The resulting non–zero components of the Christoffel symbols are Γ0
ij = ȧ ag̃ij and Γi

0j = ȧ
a δ

i
j .

Here ȧ ≡ da/dτ , i = 1, 2, 3 and g̃ij is the metric of the three–sphere of unit radius. As the result

also Γi
jk components of the Christophel symbols are not zero and are proportional to those of the

three–sphere, but we do not need their explicit form in this lecture.

One can find from these Christoffel symbols that the “00” part of the Einstein tensor, Gµν ≡
Rµν − 1

2 gµν R, has the following form:

G00 =
3

a2
(
ȧ2 + 1

)
. (4)

At the same time the energy–momentum tensor inside the ball is Tµν = ρ(τ)uµ uν . In the reference

frame of (3) the dust remains stationary, i.e. dχ = dθ = dφ = 0. Hence, uµ = (1, 0, 0, 0) and the

only non–zero component of Tµν is T00 = ρ(τ). As the result from (4) we find that one of the

Einstein equations is as follows:
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ȧ2 + 1 =
8πκ

3
ρ a2. (5)

Equations for T0j do not lead to non–trivial relations: they just give relations stating that 0 = 0.

As we have explained at the end of the lecture III, instead of some the remaining equations one

can use the energy–momentum tensor conservation condition,

0 = DµT
µ
ν = ∂µ (ρ u

µ uν) + Γµ
βµ ρ u

β uν − Γβ
νµ ρ u

µ uβ. (6)

Here we have four equations — one for each value of ν. If ν = 1, 2, 3 then again we get trivial

relations 0 = 0. However, if ν = 0 we obtain the following equation:

ρ̇+ 3
ȧ

a
ρ = 0, where ρ̇ =

dρ

dτ
. (7)

Hence, ∂τ
(
ρ a3

)
= 0 and we obtain the obvious result that if the volume of spatial sections decreases

as a3(τ) the density of the dust is increasing as ρ(τ) = const
a3(τ)

. Let us choose here such a constant

that ρ a3 = 3
8πκ a0. Then the solution of (5) has the following parameterized form:

a(η) =
a0
2

(1 + cos η) , and τ(η) =
a0
2

(η + sin η) . (8)

We discuss the physical meaning of the parameter η and of such solutions in the lecture XI in

grater details. Here we just check that (8) indeed solves (5). In fact, dτ
dη = a0

2 (1 + cos η) = a(η).

Then, da
dτ = da

dη
dη
dτ = da

dη
1
a . As the result from (5) we derive the equation

(
da

dη

)2

+ a2 = a0 a. (9)

One can check by explicit substitution that a(η) from (8) solves this equation.

From (8) we see that the collapse starts at η = 0, which corresponds to τ = 0. In Schwarzschild

coordinates this corresponds to t = 0, when thermonuclear fuel inside the ball was completely

spent. At this moment a = a0. The collapse ends as a → 0. That happens as η → π, i.e. when

the proper time reaches τ = πa0
2 . Thus, the collapse process takes the finite proper time: the shell

crosses the horizon r = rg and even reaches the singularity within the finite proper time.

3. What remains to be done is to glue the metrics ds2+ and ds2− and their first derivatives across

the surface Σ of the ball. Their second derivatives, which are related to the Ricci tensor, are fixed

by Einstein equations.

In terms of the metric ds2− the surface Σ is just a two sphere at some value χ0 of the angle χ.

Then the induced metric on the surface is

ds2−
∣∣
Σ
= dτ2 − a2(τ) sin2 χ0 dΩ

2. (10)
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This metric has to be related to the one on the world–hypersurface zµ(τ) = [T (τ), R(τ)] in the

Schwarzschild background:

ds2+
∣∣
Σ
=

[(
1− rg

R

) (
dT

dτ

)2

− 1

1− rg
R

(
dR

dτ

)2
]
dτ2 −R2(τ) dΩ2. (11)

To have that ds2−
∣∣
Σ
= ds2+

∣∣
Σ
, there should be relations as follows:

R(τ) = a(τ) sinχ0,(
1− rg

R

) (
dT

dτ

)2

− 1

1− rg
R

(
dR

dτ

)2

= 1. (12)

These relations allow us to find R(τ) from (8) and T (τ) from the equation:

Ṫ =

√
Ṙ2 + 1− rg

R

1− rg
R

, where Ṫ =
dT

dτ
, and Ṙ =

dR

dτ
. (13)

This is the world–hypersurface of the boundary of the ball as it is seen by outside observers.

From the last equation one can see that as R → rg in the collapse process, we can neglect 1− rg
R

in comparison with Ṙ2 under the square root. Then,

dT ≈ − dR

1− rg
R

, (14)

and the minus sign appears here because during the collapse process we have that dR < 0, while

dT > 0. Thus, one obtains that

R(T ) ≈ rg

(
1 + e

− T
rg

)
, (15)

i.e. from the point of view of an observer, which is fixed at some r > R(τ), the fall of the star’s

matter through the surface r = rg never happens. The matter of the star just asymptotically

approaches its gravitational radius as t → +∞. That is true although the star falls behind its

gravitational radius within the above mentioned finite proper time.

The next step is to glue the first derivatives of ds2− and ds2+ across Σ. This demands some

straightforward calculations with the use of differential geometry for surfaces in curved space–

times. This goes beyond the scope of our lectures. But the result of the calculation is very simple

and can be predicted on general physical grounds. In fact, from the gluing conditions in question

one finds that

rg = 2κ
4π

3
ρ(τ)R3(τ) = const. (16)
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Figure 1:

Which just means that the mass of the star/black hole remains constant during the ideal spher-

ical collapse. Moreover, the mass is appropriately related to the gravitational radius, rg, of the

Schwarzschild geometry.

4. Let us draw the Penrose–Carter diagram for the Oppenheimer–Snyder collapsing solution.

To do that we have to draw separately the diagrams for ds2+ and ds2− and to glue them across

Σ. For the Schwarzschild part, ds2+, the diagram is shown on the fig. (1). This is just the same

diagram as in the last lecture, but it is valid only beyond Σ whose world–surface is [T (τ), R(τ)]

after t = 0. Before t = 0 the surface Σ remains stationary at some radius r = R0 > rg.

To draw the Penrose–Carter diagram for ds2− let us represent this metric as follows:

ds2− = dτ2 − a2(τ)
[
dχ2 + sin2 χdΩ2

]
= a2(η)

[
dη2 − dχ2 − sin2 χdΩ2

]
, (17)

where η ∈ [0, π] is defined in (8). Now we should drop off the conformal factor a2(η) and choose the

relevant two–dimensional part i.e. (η, χ). Then we obtain just a part of the square for 0 ≤ χ ≤ χ0

and 0 ≤ η ≤ π. This has to be glued to the diagram for the fig. (1) after t = 0. Before this moment

of time the Penrose–Carter diagram of the space–time behind Σ is just very similar to a part of

the Minkowski space–time diagram, as will become clear in the next lecture.

All in all, this way one finds the total Penrose–Carter diagram for the Oppenheimer–Snyder

collapsing solution which is shown on the fig. (2). It can be adjusted to the shown here form by a

suitable conformal transformation. It is worth stressing at this point that in doing this gluing of

diagrams we drop off different conformal factors for different parts of the diagram.
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Figure 2:

As one can see, the obtained diagram does not contain the white hole part. But it is not hard

to find the time reversal of the collapsing solution. It is given by the same equation as (8) for

η ∈ [π, 2π] or by

a(η) =
a0
2

(1− cos η) , and τ(η) =
a0
2

(η − sin η) , (18)

if one chooses η ∈ [0, π]. This solution describes explosion starting from η = 0, when τ = 0

and a = 0. Then as η reaches π the conformal factor inflates to a = a0. If something stops the

explosion at a = a0, then the corresponding Penrose–Carter diagram is just the time reversal of

the one shown on the fig. (2)

5. Let us see now what happens with waves which are created in the vicinity of a collapsing

body as the time goes by and the body approaches its Schwarzschild radius. The arguments, which

are presented here, are borrowed from the book of I.Kriplovich “General Relativity”. Consider an

electromagnetic excitation, which is created at a radius r0 = rg + ϵ in the vicinity of the horizon.

Radial propagation time of this excitation from r0 to r ≫ rg follows from the equation:

0 = ds2 =
(
1− rg

r

)
dt2 − dr2

1− rg
r

, (19)

and is equal to

t =

∫ r

r0

dr

1− rg
r

= r − r0 + rg log
r − rg
r0 − rg

≈ r + rg log
r

ϵ
. (20)
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If the frequency at r0 is equal to ω0, then, as follows from the last equation of the previous lecture,

at r > r0 the frequency is reduced to

ω = ω0

√
g00(r0)

g00(r)
≈ ω0

√
ϵ

rg
, if r ≫ rg. (21)

This effect can be understood on general physical grounds. In fact, a photon performs a work to

climb out from the gravitational attraction of the massive center. Then its energy and, hence,

frequency should reduce.

As follows from (20)

ϵ

r
= e

− t−r
rg . (22)

Hence, the frequency of the excitation depends on time as follows:

ω(t) = ω0

√
r

rg
e
− t−r

2rg . (23)

Furthermore, the phase of the electromagnetic excitation is changing as

∫ t

0
dt′ω(t′) = −2ω0

√
r rg e

− t−r
2 rg . (24)

Then the spectrum of the corresponding wave–packet at large distances is as follows:

f(ω) ∼
∫ ∞

0
dt ei ω t exp

[
−2 i ω0

√
r rg e

− t−r
2 rg

]
∼

(
2ω0

√
r rg

)2 i ω rg e−π ω rg Γ (−2 i ω rg) , (25)

where Γ(x) is the Γ–function. Here we have dropped off the factors that do not depend on ω. As

the result, the spectral density of any wave–like excitation that was created in the vicinity of the

horizon is given by:

|f(ω)|2 ∼ e−2π ω rg |Γ (−2 i ω rg)|2 =
π

ω rg

1

e4π ω rg − 1
≈ π

ω rg
e−4π ω rg . (26)

This calculation is absolutely classical. However, if in the last expression we multiply ω by ~, to
obtain energy, then the exponent will acquire the form of the Boltzman’s thermal factor:

e−
~ω
T , (27)

where T = ~
4π rg

is the so called Hawking’s temperature. Hawking effect means that black holes

are decaying via creation of particles with thermal spectrum. Formally, Hawking radiation of black

holes follows from similar equations. However, conceptually the effect in question is much more
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complicated and its discussion goes beyond the scope of our lectures. But let us just point out

that Hawking effect follows from a change of the ground state of quantum fields due to a collapse

process.

6. Now it is worth asking the following question. Does actually the creation of the black hole

ever happens from the point of view of those who always stay outside it? Or do they just see such

an eternal asymptotically slowing down process which was described above? Although this is just

an academic question, because there seems to be no device which will be always sensitive to the

exponentially suppressed factor e−t/rg in (23) or in (15), as t → +∞, we still would like to address

it here. I think that an answer on this question may be relevant for the deeper understanding of

the Hawking radiation and backreaction on it. Note that as pointed out above formally this effect

appears due to the same exponential factor.

Now we present some intuitive speculations, which still need to get some solid mathematical

approval. Let us see what happens with the light rays which are scattered off the surface of the

star or radiated by it. If one has absolutely sensitive device and takes the above picture seriously,

he is expecting to see that the signal will be eternally coming out from the star. Of cause sooner

or letter the electromagnetic waves will be red–shifted to the radio frequency, but still the signal

will be eternally coming out, although being exponential suppressed in frequency.

However, this picture is valid only if we assume that light rays are going along light–like geodesics

on the Schwarzschild background. That is true, if one neglects that electromagnetic wave itself

carries energy and, hence, also curves the space–time. The latter effect is very small, but the

question is if one can neglect it, if address the issues of the exponentially suppressed effects.

To understand what we are actually up to here, consider the fig. (1) of the lecture IV. From

the corresponding picture one can see that the horizon is just one of the light–like geodesics. It is

a boundary between two families of “outgoing” geodesics. Moreover if light was going along the

horizon it will remain there eternally.

However, if one takes into account that electromagnetic field also does curve space–time, he

has to draw real light–like world–lines rather than geodesics. The picture of the fig. (1) from the

lecture IV is not applicable anymore. In fact, apart from all the new picture will not be static. But

certain relevant features of this picture will remain unchanged. Namely, we still expect to have

two families of “outgoing” light–like world–lines — those which escape to infinity and those which

are directed onto the singularity. To see this one can just study short parts of the world–lines in

question, i.e. seeds of light–like lines during small periods of time. But the boundary separating

these two families of curves will not belong to the class of the light–like world–lines. The light ray

cannot anymore eternally stay on the fixed radius r = rg.

Rephrasing this, we expect that among the photons, which are emitted by the star, there will

be a last one that will reach outside observers. The next photon after that will just participate

into the creation of the black hole as a part of its matter content. As the result, the outside

observer sooner or latter will stop receiving signals from the collapsing star. And that will happen

objectively rather than due to a lack of the sensitivity of his device.

One of the disadvantages of the picture that we have described here is that, if it is true, then

the moment of the formation of the black hole depends on the energy of the photons that are
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emitted by the collapsing star. But at this moment for us it is important to see that the black

hole is actually created during a finite time as measured by outside observers. In any case we just

qualitatively described some phenomenon which remains to be described quantitatively somehow.

Problems

• Calculate the Christoffel symbols and the Ricci tensor for the metric ds2−.

Subjects for further study:

• Thin–shell collapse.

• Gluing conditions for the metric.

• Black hole thermodynamics.


