Task 3. Analytic sets, Proper Mapping Theorem, automorphisms. Deadline: March 9

February 22, 2016

Problem 1. ${ }^{*}$ Let $P_{w}\left(z_{1}\right)$ be a Weierstrass polynomial on $\mathbb{C} \times \Delta, \Delta$ being a polydisk in \mathbb{C}^{n-1}. Let for every $w \in \Delta$ all its roots be contained in a given disk $D_{\delta} \subset \mathbb{C}$. Set

$$
\Gamma=\left\{P_{w}\left(z_{1}\right)=0\right\} \subset U=D_{\delta} \times \Delta ; \pi\left(z_{1}, w\right)=w
$$

For every $w \in \Delta$ let $k(w)$ denote the number of geometrically distinct points of intersection $\pi^{-1}(w) \cap \Gamma, k_{\max }=\max _{w} k(w)$. Set

$$
A=\left\{w \in \Delta \mid k(w)<k_{\max }\right\} \subset \Delta .
$$

Prove that A is the zero locus of a holomorphic function $g: \Delta \rightarrow \mathbb{C}$:
a) in the case, when $P_{w}\left(z_{1}\right)$ is irreducible;
b) in the general case.

Problem 2. Prove Weierstrass Division Theorem. Let $g\left(z_{1}, w\right)$ be a Weierstrass polynomial of degree d in $z_{1},\left(z_{1}, w\right) \in \mathbb{C}^{n}$ (more precisely, its germ at $0 \in \mathbb{C}^{n}$). For every germ of holomorphic function $f\left(z_{1}, w\right)$ there exist a unique germ of holomorphic function h and a unique polynomial $p\left(z_{1}, w\right)=a_{0}(w) z_{1}^{\nu}+\cdots+a_{\nu}(w)$ in $z_{1}, \nu=d e g_{z_{1}} p<d$, with coefficients $a_{j}(w)$ holomorphic at $w=0$ such that

$$
\begin{equation*}
f=h g+p \tag{1}
\end{equation*}
$$

a) Prove a version for one variable: for every germ of holomorphic function $F(u), u \in \mathbb{C}$, at 0 and every $d \in \mathbb{N}$ there exist a unique germ of holomorphic function h and a unique polynomial $p(u)$ of degree less than d such that

$$
F(0)=h(u) u^{d}+p(u) .
$$

b)* Let D_{δ}, Δ be as in the above problem (with $P_{w}\left(z_{1}\right)$ replaced by $g\left(z_{1}, w\right)$) such that f is holomorphic on $\bar{D}_{\delta} \times \Delta$. Prove formula (1) for

$$
h\left(z_{1}, w\right)=\frac{1}{2 \pi i} \oint_{|u|=\delta} \frac{f(u, w)}{g(u, w)} \frac{d u}{u-z_{1}} .
$$

Problem 3. Prove that the image of an irreducible analytic set under a proper holomorphic mapping is an irreducible analytic set. That is, consider an irreducible analytic subset $A \subset M$ in a complex manifold M and a holomorphic mapping $f: M \rightarrow N$ to a complex manifold N with proper restriction $\left.f\right|_{A}: A \rightarrow N$. Then $f(A) \subset N$ is an irreducible analytic subset.
a) State and prove this statement for germs;
b) prove for global analytic sets.

Problem 4. Which ones of the following algebraic sets in $\mathbb{C P}^{2}$ or $\mathbb{C P}^{3}$ are regular?
a) $z_{0}^{p}+z_{1}^{p}+z_{2}^{p}=0, p \geq 2$;
b) $z_{0}^{2} z_{1}^{2}+z_{2}^{4}=0$;
c) $z_{0}\left(z_{1}^{2}+z_{2}^{2}\right)+z_{3}^{3}=0$;
d) $z_{0}^{2}\left(z_{1}^{2}+z_{2}^{2}\right)+z_{3}^{4}=0$;
e) the closure in $\mathbb{C P}^{3}$ of the rational curve $t \mapsto\left(t, t^{2}, t^{3}\right) \in \mathbb{C}^{3}, t \in \mathbb{C}$;
f) the closure in $\mathbb{C P}^{3}$ of the rational curve $t \mapsto\left(t, t^{2}, t^{4}\right) \in \mathbb{C}^{3}, t \in \mathbb{C}$.

Problem 5. Find
a) which ones of the above algebraic sets are irreducible?
b) Present the reducible ones as unions of irreducible components.

Problem 6. Find a biholomorphic automorphism of the unit ball in \mathbb{C}^{2} that sends the origin to the point
a) $\left(\frac{1}{2}, 0\right)$;
b) $\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)$.

Problem 7. (a), b)). Find similar automorphisms of the unit polydisk in \mathbb{C}^{2}.
Problem 8. Does there exist a biholomorphic automorphism
a) of $\mathbb{C P}^{1}=\overline{\mathbb{C}}$ transforming the points $0,1,2, \infty$ to $0,1,3, \infty$ respectively?
b) of $\mathbb{C P}^{1}=\overline{\mathbb{C}}$ transforming the points $0,1, \frac{1}{2}, 2$ to $0,2,1,4$ respectively?
c) a non-trivial biholomorphic automorphism of $\mathbb{C P}^{2}$ fixing $(1: 0: 0),(0: 1: 0),(0: 0: 1)$ and a given $(a: b: c)$ with $a, b, c \neq 0$?
d) a non-trivial biholomorphic automorphism of $\mathbb{C P}^{2}$ fixing $(1: 0: 0),(0: 1: 0),(0: 0: 1)$ and a given point $(0: a: b)$?

Problem 9. Consider the action of the group of biholomorphic automorphisms of $\mathbb{C P}^{2}$ on quadruples of points $a=\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \in\left(\mathbb{C P}^{2}\right)^{4}$.
a) Let two quadruples a, b be in generic position. How many are there biholomorphic automorphisms of $\mathbb{C P}^{2}$ transforming a to b ?
b)* What could be the dimension of an orbit of the above action?
c)** Describe all the orbits.

