Task 3. Analytic sets, Proper Mapping Theorem, automorphisms. Deadline: March 9

February 22, 2016

Problem 1. * Let $P_w(z_1)$ be a Weierstrass polynomial on $\mathbb{C} \times \Delta$, Δ being a polydisk in \mathbb{C}^{n-1} . Let for every $w \in \Delta$ all its roots be contained in a given disk $D_{\delta} \subset \mathbb{C}$. Set

$$\Gamma = \{P_w(z_1) = 0\} \subset U = D_\delta \times \Delta; \ \pi(z_1, w) = w.$$

For every $w \in \Delta$ let k(w) denote the number of geometrically distinct points of intersection $\pi^{-1}(w) \cap \Gamma$, $k_{\max} = \max_{w} k(w)$. Set

$$A = \{ w \in \Delta \mid k(w) < k_{\max} \} \subset \Delta.$$

Prove that A is the zero locus of a holomorphic function $g: \Delta \to \mathbb{C}$:

- a) in the case, when $P_w(z_1)$ is irreducible;
- b) in the general case.

Problem 2. Prove Weierstrass Division Theorem. Let $g(z_1, w)$ be a Weierstrass polynomial of degree d in z_1 , $(z_1, w) \in \mathbb{C}^n$ (more precisely, its germ at $0 \in \mathbb{C}^n$). For every germ of holomorphic function $f(z_1, w)$ there exist a unique germ of holomorphic function h and a unique polynomial $p(z_1, w) = a_0(w)z_1^{\nu} + \cdots + a_{\nu}(w)$ in z_1 , $\nu = deg_{z_1}p < d$, with coefficients $a_i(w)$ holomorphic at w = 0 such that

(1)
$$f = hg + p.$$

a) Prove a version for one variable: for every germ of holomorphic function F(u), $u \in \mathbb{C}$, at 0 and every $d \in \mathbb{N}$ there exist a unique germ of holomorphic function h and a unique polynomial p(u) of degree less than d such that

$$F(0) = h(u)u^d + p(u).$$

b)* Let D_{δ} , Δ be as in the above problem (with $P_w(z_1)$ replaced by $g(z_1, w)$) such that f is holomorphic on $\overline{D}_{\delta} \times \Delta$. Prove formula (1) for

$$h(z_1, w) = \frac{1}{2\pi i} \oint_{|u|=\delta} \frac{f(u, w)}{g(u, w)} \frac{du}{u - z_1}$$

Problem 3. Prove that the image of an irreducible analytic set under a proper holomorphic mapping is an irreducible analytic set. That is, consider an irreducible analytic subset $A \subset M$ in a complex manifold M and a holomorphic mapping $f : M \to N$ to a complex manifold N with proper restriction $f|_A : A \to N$. Then $f(A) \subset N$ is an irreducible analytic subset.

- a) State and prove this statement for germs;
- b) prove for global analytic sets.

Problem 4. Which ones of the following algebraic sets in \mathbb{CP}^2 or \mathbb{CP}^3 are regular?

- a) $z_0^p + z_1^p + z_2^p = 0, p \ge 2;$
- b) $z_0^2 z_1^2 + z_2^4 = 0;$

- c) $z_0(z_1^2 + z_2^2) + z_3^3 = 0;$ d) $z_0^2(z_1^2 + z_2^2) + z_3^4 = 0;$ e) the closure in \mathbb{CP}^3 of the rational curve $t \mapsto (t, t^2, t^3) \in \mathbb{C}^3, t \in \mathbb{C};$
- f) the closure in \mathbb{CP}^3 of the rational curve $t \mapsto (t, t^2, t^4) \in \mathbb{C}^3, t \in \mathbb{C}$.

Problem 5. Find

a) which ones of the above algebraic sets are irreducible?

b) Present the reducible ones as unions of irreducible components.

Problem 6. Find a biholomorphic automorphism of the unit ball in \mathbb{C}^2 that sends the origin to the point

a) $(\frac{1}{2}, 0);$ b) $(\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}).$

Problem 7. (a), b)). Find similar automorphisms of the unit polydisk in \mathbb{C}^2 .

Problem 8. Does there exist a biholomorphic automorphism

- a) of $\mathbb{CP}^1 = \overline{\mathbb{C}}$ transforming the points 0, 1, 2, ∞ to 0, 1, 3, ∞ respectively?

b) of $\mathbb{CP}^1 = \overline{\mathbb{C}}$ transforming the points 0, 1, $\frac{1}{2}$, 2 to 0, 2, 1, 4 respectively? c) a non-trivial biholomorphic automorphism of \mathbb{CP}^2 fixing (1:0:0), (0:1:0), (0:0:1)and a given (a:b:c) with $a, b, c \neq 0$?

d) a non-trivial biholomorphic automorphism of \mathbb{CP}^2 fixing (1:0:0), (0:1:0), (0:0:1)and a given point (0:a:b)?

Problem 9. Consider the action of the group of biholomorphic automorphisms of \mathbb{CP}^2 on quadruples of points $a = (A_1, A_2, A_3, A_4) \in (\mathbb{CP}^2)^4$.

a) Let two quadruples a, b be in generic position. How many are there biholomorphic automorphisms of \mathbb{CP}^2 transforming a to b?

b)* What could be the dimension of an orbit of the above action?

c)** Describe all the orbits.