Task 5. Part 2: Dolbeault cohomology, Cousin problems, sheaves

April 20, 2016

Problem 1. Let D be a topological space, \mathcal{J} be a sheaf over it. Let \mathcal{U}, \mathcal{V} be coverings of the space D by open sets such that $\mathcal{V}<\mathcal{U}$: each covering element $V_{\alpha} \in \mathcal{V}$ is contained in some element $U_{\phi(\alpha)} \in \mathcal{U}$ for a certain index mapping $\phi: \alpha \mapsto \phi(\alpha)$. For every two mappings ϕ_{1}, ϕ_{2} as above let us consider the corresponding induced mappings

$$
f_{j}: C_{\mathcal{U}}^{k} \rightarrow C_{\mathcal{V}}^{k},\left(f_{j} h\right)_{\alpha_{0} \ldots \alpha_{k}}=h_{\phi_{j}\left(\alpha_{0}\right) \ldots \phi_{j}\left(\alpha_{k}\right)}, j=1,2
$$

Show that f_{1} and f_{2} are chain-homotopic:

$$
\begin{gathered}
f_{2}-f_{1}=\delta \theta_{k}+\theta_{k+1} \delta, \delta: C^{r} \rightarrow C^{r+1} \text { is the differential, } \\
\theta_{l}: C_{\mathcal{U}}^{l} \rightarrow C_{\mathcal{V}}^{l-1},\left(\theta_{l} h\right)_{\alpha_{0}, \ldots \alpha_{l-1}}=\sum_{s=0}^{l-1}(-1)^{s} h_{\phi_{1}\left(\alpha_{0}\right) \ldots \phi_{1}\left(\alpha_{s}\right) \phi_{2}\left(\alpha_{s}\right) \ldots \phi_{2}\left(\alpha_{l-1}\right)} .
\end{gathered}
$$

Problem 2. Let M be a real manifold. Let $H_{d R}^{k}(M)$ denote the de Rham cohomology: the quotient space of the C^{∞}-smooth closed k-forms over the exact k-forms (the image of the differential). Prove de Rham theorem: $H_{d R}^{k}(M)$ is isomorphic to the cohomology $H^{k}(M, \mathbb{R})$ with coefficients in the sheaf of locally constant real-valued functions. (Hence, it is isomorphic to the singular cohomology with real coefficients.)

Hint. Let \mathcal{E}^{k} denote the sheaf of C^{∞}-smooth k-forms. Use the short exact sequences

$$
0 \longrightarrow d \mathcal{E}^{k-1} \longrightarrow \mathcal{E}^{k} \longrightarrow d \mathcal{E}^{k} \longrightarrow 0, k \geq 0 ; d \mathcal{E}^{-1}:=\mathbb{R}
$$

the fact that the sections of the sheaf $d \mathcal{E}^{k-1}$ are the closed k-forms and triviality of the cohomology $H^{s}\left(M, \mathcal{E}^{k}\right)$ for $s>0$ (as a given known statement).
Problem 3. Prove the above vanishing statement $H^{s}\left(M, \mathcal{E}^{k}\right)=0$ using the same idea, as in the proof of the theorem from the lectures on the solution of Additive Smooth Cousin Problem, which implies that $H^{1}\left(M, C^{\infty}(M)\right)=0$ (locally finite covering, partition of unity, etc.).
Problem 4. Prove that the $\bar{\partial}$-problem can be solved for punctured disk $D_{1}^{0}=D_{1} \backslash\{0\} \subset \mathbb{C}$.
Problem 5. Calculate the cohomology $H^{k}\left(D_{1}^{0}, \mathcal{O}^{*}\right)$, using the result of the latter problem, the known cohomology $H^{k}\left(D_{1}^{0}, \mathbb{Z}\right)$ and appropriate exact sequences.
Problem 6. Let M be a compact complex manifold. Prove that the space of holomorphic sections of every holomorphic vector bundle on M is finite-dimensional.

Hint. Introduce a Banach space structure on the above space and prove compactness of its unit ball.

