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1 Holomorphic functions of several complex vari-
ables. Cauchy–Riemann equations, Cauchy for-
mula, Taylor series

Definition 1.1 Let Ω ⊂ Cn be an open subset. Recall that a function f :
Ω→ C is said to be (R-)differentiable at a point p ∈ Ω, if it is differentiable
there as a function of real variables: there exists an R-linear mapping df(p) :
TpCn ' R2n → TpC ' R2 such that

f(z)− f(p) = df(p)(z − p) + o(z − p), as z → p.

A function f is said to be C-differentiable at a point p, if it is differentiable
there and its differential df(p) is C-linear. A function f is said to be holo-
morphic on Ω, if it is C-differentiable at each point x0 ∈ Ω. A function f is
said to be holomorphic at a point x0 ∈ Cn, if it is C-differentiable in some
its neighborhood. A holomorphic mapping F = (F1, . . . , Fm) : U → V ,
U ⊂ Cn, V ⊂ Cm is defined in literally the same way: it is holomorphic, if
and only if so are its components F1, . . . , Fm.

Holomorphicity of a differentiable function is equivalent to Cauchy–
Riemann Equations. To write them, let us recall the following definitions
and formula from one-dimensional complex analysis. Let f : U → C be a
differentiable mapping of a domain U ⊂ C. The differential df(p) : TpC '
C→ Tf(p)C ' C is an R-linear map C→ C. Each R-linear map L : C→ C
is a sum of its C-linear part and its C-antilinear part:

L = Adz +Bdz; A,B ∈ C.

The coefficient A of the C-linear part of the differential is called ∂f
∂z (p); the

coefficient B of the antilinear part is called ∂f
∂z̄ (p). Let z = x+ iy. One has

df =
∂f

∂z
dz +

∂f

∂z̄
dz;

∂f

∂z
=

1

2
(
∂f

∂x
− i∂f

∂y
),
∂f

∂z̄
=

1

2
(
∂f

∂x
+ i

∂f

∂y
).

Proposition 1.2 (Cauchy–Riemann Equations). A differentiable function
f(z1, . . . , zn) on a domain in Cn is holomorphic, if and only if

∂f

∂z̄j
≡ 0 for every j = 1, . . . , n. (1.1)

Proof The tangent space TpCn is the direct sum of complex “coordinate
lines” parallel to the coordinate axes. Thus, the C-linearity of the differential
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df(p) is equivalent to the C-linearity of its restrictions to all the coordinate
lines. The latter is equivalent to (1.1). This proves the proposition. 2

Example 1.3 Holomorphicity is preserved under arithmetic combinations
and compositions. In particular, polynomials and rational functions and in
general, all the elementary functions (restricted to their appropriate defini-
tion domains) are holomorphic.

Remark 1.4 In the case, when n = 1 the above definition coincides with
the classical definition of holomorphic function of one complex variable. If
a function f is holomorphic in Ω, then for every complex line L ⊂ Cn the
restriction f |L∩Ω is holomorphic as a function of one variable. The next Big
Hartogs’ Theorem implies that the converse is also true.

Theorem 1.5 (Hartogs). A function f(z1, . . . , zn) is holomorphic on a do-
main Ω = Ω1×· · ·×Ωn ⊂ Cn, if and only if it is separately holomorphic:
for every j = 1, . . . , n and every given collection of points zs ∈ Ωs, s 6= j,
the function g(z) = f(z1, . . . , zj−1, z, zj+1, . . . , zn) is holomorphic on Ωj.

Remark 1.6 The nontrivial part of the theorem says that if a function is
separately holomorphic, then it is holomorphic as a function of several vari-
ables. Under the additional assumption that f is differentiable, this state-
ment follows immediately from Proposition 1.2. We will not prove Theorem
1.5 in full generality. We will prove its weaker version under continuity
assumption (Osgood Lemma).

Holomorphic functions in several variables share the basic properties of
holomorphic functions in one variable: existence of converging Taylor series,
uniqueness of analytic extension, openness, Maximum Principle, Liouville
Theorem. At the same time we will see that the following new phenomena
hold for holomorphic functions in several complex variables, which are in
contrast with the case of one variable:

- no isolated singularities;
- erasing compact singularities: holomorphic functions on a complement

of a domain V ⊂ Cn to a compact subset K b V extend holomorphically to
all of V .

Everywhere below for every δ > 0 and z ∈ C we denote

Dδ(z) = {|w − z| < δ} ⊂ C; Dδ = Dδ(0).

The corresponding balls in Cn of radius δ will be denoted by Bδ(z) and Bδ
respectively. For every r = (r1, . . . , rn) ∈ Rn+, z = (z1, . . . , zn) ∈ Cn the
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polydisk of multiradius r centered at z is the product of disks of radii rj ,
which we will denote by

∆r(z) =
∏
j

Drj (zj) = {w = (w1, . . . , wn) ∈ Cn | |wj−zj | < rj}; ∆r = ∆r(0).

For δ > 0 we denote ∆δ(z) = ∆(δ,...,δ)(z), ∆δ = ∆δ(0). In the case, when we
would like to specify the dimension of the ambient space of the polydisk, we
will write ∆n

r , ∆n
δ (z) etc.

The next theorem generalizes Cauchy formula for holomorphic functions
in one variable.

Theorem 1.7 (Multidimensional Cauchy formula). Let f : ∆r → C be a
continuous function that is holomorphic in each variable zj, j = 1, . . . , n. (In
particular, this holds for every function holomorphic on ∆r and continuous
on its closure). Then for every z = (z1, . . . , zn) ∈ ∆r one has

f(z) =
1

(2πi)n

∮
|ζ1|=r1

. . .

∮
|ζn|=rn

f(ζ)∏n
j=1(ζj − zj)

dζn . . . dζ1. (1.2)

Remark 1.8 Let g(ζ) denote the sub-integral function in the latter right-
hand side. The multiple integral in (1.2) is independent of integration order
(Fubini’s theorem and continuity of the function g(ζ)). It is equal to the
integral of the complex-valued differential n-form g(ζ)dζ1 ∧ · · · ∧ dζn on
the n-torus Tn =

∏n
j=1 S

1
j , S1

j = {|ζj | = rj}, oriented as a product of
positively (i.e., counterclockwise) oriented circles. That is, an orienting basis
v1, . . . , vn ∈ TζTn is formed by vectors vj ∈ TζjS1

j oriented counterclockwise.

Proof It suffices to prove the statement of the theorem in the case, when
f is holomorphic in each variable on a domain containing the closed poly-
disk ∆r: the general case is reduced to it via scaling the function f to
fε(z) = f(εz), 0 < ε < 1 (which is holomorphic in each variable on ∆r) and
passing to the limit under the integral, as ε → 1. We prove formula (1.2)
by induction in n.

Induction base: for n = 1 this is the classical Cauchy formula for one
variable.

Induction step. Let formula (1.2) be proved for the given n = k. Let us
prove it for n = k + 1. For every w = (w1, . . . , wk) ∈ Ck set

fw(t) = f(w1, . . . , wk, t).
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For every fixed zk+1 ∈ Drk+1
the function g(w1, . . . , wk) = fw(zk+1) is holo-

morphic on ∆(r1,...,rk). Hence,

f(z1, . . . , zk+1) =
1

(2πi)k

∮
|ζ1|=r1

. . .

∮
|ζk|=rk

fζ(zk+1)∏k
j=1(ζj − zj)

dζk . . . dζ1, (1.3)

by the induction hypothesis. The function fζ(t) being holomorphic in t ∈
Drk+1

for every ζ = (ζ1, . . . , ζk), it is expressed by Cauchy Formula

fζ(t) =
1

2πi

∮
|ζk+1|=rk+1

fζ(ζk+1)

ζk+1 − t
dζk+1 for every t ∈ Drk+1

.

Substituting the latter formula with t = zk+1 to (1.3) yields (1.2), by conti-
nuity and Fubini Theorem. 2

Lemma 1.9 (Osgood). Every continuous function on a domain in Cn that
is holomorphic in each individual variable is holomorphic.

Proof It sufficed to prove the statement of the lemma for a function con-
tinuous on a closed polydisk ∆r. Then Multidimensional Cauchy Formula
(1.2) holds, and its subintegral expression is a continuous family of rational
functions in z ∈ ∆r. Therefore, the subintegral expressions are holomorphic
on ∆r. They are uniformly bounded and continuous together with deriva-
tives on compact subsets in ∆r. Therefore, the integral is C1-smooth and its
partial derivatives are equal to the integrals of partial derivatives in z of the
subintegral expression (here one can differentiate the integral by the above
boundedness and continuity statements). It satisfies Cauchy–Riemann equa-
tions, as do the subintegral functions, and hence, is holomorphic. The lemma
is proved. 2

Set

Z≥0 = N ∪ {0}.

Theorem 1.10 Every function f holomorphic at 0 ∈ Cn is a sum of power
series converging to f uniformly on a neighborhood of 0:

f(z) =
∑
k∈Zn≥0

ckz
k; ck ∈ C, zk = zk11 . . . zknn , c0 = f(0). (1.4)
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Proof Fix a δ > 0 such that f is holomorphic on the closed polydisk ∆δ.
Let us show that the right-hand side of the Cauchy formula is a sum of
power series converging on ∆δ. For every ζj and zj with |zj | < δ = |ζj | one
has

1

ζj − zj
= ζ−1

j

1

1− zj
ζj

=

+∞∑
l=0

ζ−l−1
j zlj . (1.5)

This series converges absolutely uniformly on every disk |zj | ≤ δ′ with δ′ < δ.
Hence, the product of the latter series for all j = 1, . . . , n also absolutely
uniformly converges to 1∏

j(ζj−zj)
on ∆δ′ . Substituting formulas (1.5) for all

j to (1.2) together with permutability of integration and series summation
(ensured by absolute uniform convergence of subintegral series and uniform
boundedness of the function on ∂∆) yields (1.4) with

ck =
1

(2πi)n

∮
|ζ1|=δ′

. . .

∮
|ζn|=δ′

f(ζ)

ζ−k1−1
1 . . . ζ−kn−1

n

dζ1 . . . dζn. (1.6)

Substituting k = 0 yields c0 = f(0), by (1.2). 2

2 Convergence of power series and convergence
radius. Equivalent definition of holomorphic func-
tion

Lemma 2.1 (Abel). Consider a power series
∑

k∈Zn≥0
ckz

k. Let its terms

ckz
k at a given point z = (z1, . . . , zn) ∈ Cn be uniformly bounded, set

rj = |zj |, r = (r1, . . . , rn). Then the series converges uniformly on com-
pact subsets in the polydisk ∆r.

Proof Fix some δ = (δ1, . . . , δn) with δj < rj for all j. It suffices to show
that

∑
|ck|δk <∞. Indeed, set

νj =
δj
rj
< 1, C = sup

k
|ckrk| < +∞.

Then |ck|δk ≤ Cνk. But∑
k

νk =
n∏
j=1

(
+∞∑
s=0

νsj ) =
1∏

j(1− νj)
< +∞.

Therefore, the series
∑

k |ck|δk is majorated by a converging series C
∑

k ν
k,

and hence, converges. The lemma is proved. 2
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Definition 2.2 A polydisk ∆r(a) with multiradius r = (r1, . . . , rn) is called
the convergence polydisk of a series

∑
k∈Z≥0

ck(z−a)k, if the series converges

in ∆r(a) and does not converge in every polydisk ∆R(a), with Rj ≥ rj for
all j and Rj > rj for at least some j. The multiradius of a convergence
polydisk is called a convergence multiradius. (In general, the convergence
multiradius is not unique, as we will see in the next examples.)

Definition 2.3 The convergence domain of a power series is the interior of
the set of convergence points.

Corollary 2.4 The convergence domain is a union of convergence poly-
disks. If a = 0, then the convergence domain is invariant under the torus
action (z1, . . . , zn) 7→ (eiφ1z1, . . . , e

iφnzn), φj ∈ R(mod2πZ).

Proof It suffices to prove the statements of the corollary for a = 0.
Given a power series, let D denote its convergence domain. Given a point
z = (z1, . . . , zn) ∈ D, let us construct a polydisk ∆r ⊂ D containing z. For
every λ > 1 close enough to 1 (dependently on z) one has w = λz ∈ D, by
definition. Set rj = |wj | = λ|zj | > |zj |, r = (r1, . . . , rn). The sequence ckr

k

is uniformly bounded, by the convergence of the series
∑

k ckw
k. Therefore,

∆r ⊂ D (Abel’s Lemma 2.1) and z ∈ ∆r, by construction. The first state-
ment of the corollary is proved. Its second statement follows from the first
one and the invariance of each polydisk centered at 0 under the torus action.
The corollary is proved. 2

Remark 2.5 Each power series converges uniformly on compact subsets in
its convergence domain, by Abel’s Lemma 2.1 and the above corollary.

Example 2.6 The convergence domain of the series
∑

k≥0 z
k
1 in two vari-

ables (z1, z2) is the cylinder |z1| < 1. The latter cylinder is the unique
convergence bidisk ∆1,∞. The convergence domain of the series

∑
zk11 zk22

is the unit bidisk ∆1,1, which is the unique convergence bidisk. The con-
vergence domain of the series

∑
(z1z2)k is the set {|z1z2| < 1}, and every

r = (r1, r2) with r1r2 = 1, r1, r2 > 0 is a convergence multiradius.

Let us recall that the convergence radius r of a power series
∑

k ckz
k

in one variable is given by the classical Cauchy-Hadamard formula r =

(limk→∞c
1
k
k )−1, or equivalently,

limk→∞(ckr
k)

1
k = 1.

The next proposition generalizes this formula to several variables.
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Proposition 2.7 An r = (r1, . . . , rn) with rj > 0 is the multiradius of a
convergence polydisk of a given power series

∑
ckz

k, if and only if

φ(r) = limk→∞(|ck|rk)
1
|k| = 1, rk = rk11 . . . rknn . (2.1)

In the proof of the proposition we use homogeneity of the upper limit φ:

φ(λr) = λφ(r) for every λ > 0.

First let us prove the following claim.

Claim. A polydisk ∆r is contained in the convergence domain D of a
series

∑
k ckz

k, if and only if φ(r) ≤ 1.

Proof If ∆r ⊂ D, then the series converges uniformly on compact subsets
in ∆r, hence, ckz

k → 0, as k →∞, for every z with |zj | < rj , in particular,
for z = λr with arbitrary 0 < λ < 1. Therefore, for every 0 < λ < 1 the
sequence λ|k||ck|rk is uniformly bounded, and hence, the upper limit of the
|k|-th roots of its terms is no greater than 1. Thus, φ(r) ≤ λ−1 for every
λ ∈ (0, 1), hence, φ(r) ≤ 1. Conversely, let φ(r) ≤ 1. Then for every λ > 1
and every k large enough dependently on λ one has |ck|rk < λ|k|, thus,
|ck|( rλ)k < 1. Therefore, ∆r/λ ⊂ D for every λ > 1 (Abel’s Lemma 2.1), and
hence, ∆r ⊂ D. The claim is proved. 2

Proof of Proposition 2.7. Let r be a convergence multiradius. Then
φ(r) ≤ 1, by the claim. If φ(r) < 1, then φ(λr) < 1 for some λ > 1, and
hence, ∆λr ⊂ D, by the claim. Thus, the convergence domain contains a
bigger polydisk ∆λr c ∆r, and r is not a convergence multiradius. The
contradiction thus obtained proves the proposition. 2

Now let us prove that every holomorphic function is C∞-smooth using
the fact that it is locally the sum of a converging power series. We show
that the latter is its Taylor series.

The higher derivatives ∂lf
∂zl

, ∂k+lf
∂zk∂z̄l

of function of one variable and the
higher derivatives

∂k+lf

∂zk∂z̄l
=

∂k+lf

∂zk11 . . . ∂zknn ∂z̄l11 . . . ∂z̄lnn
, k, l ∈ Z≥0

of a function of n complex variables are defined by subsequent differenti-
ations. They are independent on the choice of order of differentiations (if
the order of smoothness of the function is no less than the number of dif-
ferentiations). This follows from the general fact that every two differential
operators with constant coefficients commute.
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Example 2.8 Let f(z) = zs11 . . . zsnn . Then

∂k+lf

∂zk11 . . . ∂zknn ∂z̄l11 . . . ∂z̄lnn
= 0 whenever l 6= 0;

∂kf

∂zk
= 0 whenever kj > sj for a certain j;

∂kf

∂zk
=

n∏
j=1

sj !

(sj − kj)!
zs−k, whenever kj ≤ sj for all j.

Remark 2.9 All the above statements on power series remain valid for
power series

∑
k ck(z − p)k with arbitrary p ∈ Cn: the convergence domain

is a union of polydisks centered at p, etc.

Proposition 2.10 Let a power series f(z) =
∑

k ckz
k has a non-empty

convergence domain. Then its sum f(z) is holomorphic and C∞-smooth
there and

c0 = f(0), ck =
1

k1! . . . kn!

∂|k|f

∂zk
(p), (2.2)

Proof Without loss of generality we consider that p = 0. The convergence
domain is a union of convergence polydisks. Fix a convergence polydisk
∆r and let us prove the above regularity statements in ∆r. We claim that
each derivative (of any order) of the series

∑
k ckz

k converges uniformly on
compact subsets in ∆r. Let φ(r), φ1(r) denote respectively the upper limits
(2.1) corresponding to the initial series and its derivative

∂

∂z1
(
∑
k

ckz
k) =

∑
k

k1z
−1
1 ckz

k.

One has

φ1(r) = limk→∞((|k1r
−1
1 ck|rk)

1
|k|−1 ≤ limk→∞(|ck|rk)

1
|k|−1 = φ(r) ≤ 1.

Thus, the above derivative series converge uniformly on compact subsets in
∆r, by Proposition 2.7. For higher derivatives the proof is analogous: the
l-th derivation yields a new multiplier polynomial in k of fixed degree |l|,
and its contribution to the above upper limit cancels out after taking a root
of order |k|, as in the above inequality. This implies infinite differentiability
of the function f , and each its partial derivative is equal to the sum of the
corresponding derivative series. In particular, ∂f

∂z̄j
= 0, since this holds for

10



each term of the power series. Hence, f is holomorphic. The value ∂|k|f
∂zk

(0) is
equal to the free term of the corresponding derivative series, i.e., k1! . . . kn!ck.
This proves (2.2) and the proposition. 2

Corollary 2.11 A function f on a domain V ⊂ Cn is holomorphic, if and
only if each point p ∈ V has a neighborhood where f is a sum of a converging
power series

∑
k ck(z − p)k. The coefficients ck are given by formula (2.2).

Each holomorphic function is C∞-smooth.

The corollary follows from the above proposition and Theorem 1.10.

3 Analytic extension. Erasing singularities. Har-
togs Theorem

Theorem 3.1 (Uniqueness of analytic extension). Every two holomorphic
functions on a connected domain Ω ⊂ Cn that are equal on an open subset
coincide on all of Ω.

Proof It is sufficient to show that if a holomorphic function f on a con-
nected domain Ω vanishes on some open subset V ⊂ Ω, then f ≡ 0 on all of
Ω. To do this, let us consider the subset

K = ∩k∈(Z≥0)n{
∂|k|f

∂zk
= 0} ⊂ Ω : K ⊃ V.

One has f |K ≡ 0, since the latter intersection includes k = 0. The subset
K ⊂ Ω is closed, being an infinite intersection of closed subsets, since f ∈
C∞(Ω) (Corollary 2.11). The set K is open. Indeed, at each point p ∈ K the
function f has vanishing Taylor series coefficients, by definition and formula
(2.2). Hence, f ≡ 0 on a neighborhood of the point p, and thus, the latter
neighborhood is contained in K. Therefore, K is a nonempty closed and
open subset of a connected domain Ω, hence K = Ω and f ≡ 0 on Ω. 2

Proposition 3.2 (Openness Principle.) Each non-constant holomor-
phic function on a connected domain is an open map: the image of each
open subset is open.

Proof Let f be a non-constant holomorphic function on a connected do-
main Ω. It suffices to show that for every point z ∈ Ω the image of arbitrary
ball centered at z contains a neighborhood of the image f(z). Fix a z ∈ Ω
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and a complex line L through z where f |L 6≡ const in a neighborhood of
z. The line L exists since f is locally non-constant (uniqueness of analytic
extension). The restriction of the function f to a disk in L ∩ Ω centered at
z is an open map, being a non-constant holomorphic function of one com-
plex variable. This implies that the image of every disk as above contains a
neighborhood of the point f(z), and hence, so does the image of arbitrary
ball in Ω centered at z. The proposition is proved. 2

Corollary 3.3 (Maximum Principle.) The module of a non-constant
holomorphic function on a connected domain Ω cannot achieve its maximum
in Ω.

Proof If a module of a holomorphic function f 6≡ const achieves its max-
imum at a point z ∈ Ω, then the image f(Ω) contains the point f(z) but
avoids the exterior of the circle through f(z) centered at 0. Hence, it con-
tains no its neighborhood, – a contradiction to Openness Principle. The
corollary is proved. 2

Theorem 3.4 (Liouville). Every bounded holomorphic function on all of
Cn is constant.

Proof The restriction of a bounded holomorphic function f to each complex
line through the origin is constant, being a bounded holomorphic function
on C (Liouville Theorem in one variable). Therefore, f ≡ f(0) on Cn. 2

It is known that for every domain V ⊂ C there exists a holomorphic
function on V that extends analytically to no point of its boundary. This
statement is false in higher dimensions. A basic counterexample, the Hartogs
Figure is provided by the next theorem.

Theorem 3.5 (Hartogs) Let R = (R1, . . . , Rn), Rj > 0, 1 ≤ k < n, r =
(r1, . . . , rk), rs < Rs. Set Rk = (R1, . . . , Rk), R

n−k = (Rk+1, . . . , Rn). Let
V ⊂ ∆Rn−k ⊂ Cn−k be an open subset. Let z = (z1, . . . , zn) be coordinates
on Cn. Set t = (z1, . . . , zk), w = (zk+1, . . . , zn),

A = (∆Rk \∆r)×∆Rn−k , B = ∆Rk × V ⊂ ∆R ⊂ Cn, Ω = A ∪B.

(In the case, when n = 2, k = 1, V = Dr2, r2 < R2, the domain Ω is the
so-called Hartogs Figure, see Fig.1.) Then every function holomorphic on
Ω extends holomorphically to the whole polydisk ∆R = ∆Rk ×∆Rn−k .
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Figure 1: The Hartogs Figure.

Proof For simplicity, let us prove the theorem in the case, when n = 2,
k = 1: thus Rk = R1, Rn−k = R2, z = (z1, z2), t = z1, w = z2. The proof in
the general case is analogous. Let f be a function holomorphic on Ω. Fix an
arbitrary δ ∈ (r1, R1). For every w ∈ V the function f(z1, w) is holomorphic
in z1 ∈ DR1 ⊂ C, since DR1 × {w} ⊂ B ⊂ Ω. Therefore, for every z1 ∈ Dδ

it is expressed as Cauchy integral

f(z1, w) =
1

2πi

∮
|z1|=δ

f(ζ, w)

ζ − z1
dζ. (3.1)

For every fixed w ∈ DR2 the subintegral function is holomorphic in z1 ∈
Dδ. Hence, the integral is also holomorphic in z1 ∈ Dδ, as in the proof of
Osgood’s Lemma. For every fixed ζ ∈ DR1\Dδ ⊃ ∂Dδ the function f(ζ, w) is
holomorphic in w ∈ DR2 , since {ζ}×DR2 ⊂ A ⊂ Ω. Finally, the subintegral
function is holomorphic in (z1, w) ∈ Dδ×DR2 , and hence, so is the integral.
Thus, formula (3.1) extends the function f(z1, w) holomorphically to Dδ ×
DR2 . Thus, f is holomorphic there and hence, on all of ∆R = DR1 ×DR2 ,
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since δ is an arbitrary number between r1 and R1. This proves the theorem
for n = 2 and k = 1. Theorem 3.5 is proved. 2

Exercise. Prove Theorem 3.5 in the general case using multidimensional
Cauchy integral.

Theorem 3.6 (Erasing compact singularities). Let G ⊂ Cn be an open
subset, K b G be a compact subset. Let both G and the complement G \K
be connected. Then every function holomorphic on G \K extends holomor-
phically to all of G.

We prove this theorem only in the case, when the ambient domain is a
polydisk. Its proof in general case is more complicated and can be done by
using, e.g., Bochner–Martinelli integral formula.
Proof of Theorem 3.6 in the case, when G is a polydisk. Let us
prove the theorem in the case when n = 2: in higher dimensions the proof
is literally analogous. Let G = ∆R, R = (R1, R2). Let K1, K2 denote
respectively the images of the compact set K under the projections to the
z1- and z2-axes: K1 b DR1 , K2 b DR2 . Fix an open subset V ⊂ DR2 \K2

and a 0 < r1 < R1 such that K1 b Dr1 . Let Ω be the Hartogs figure from
Theorem 3.5 constructed by the chosen r1, V and R. One has Ω ⊂ ∆R \K.
Therefore, every function holomorphic on ∆R \K is holomorphic on Ω, and
hence, extends to a function holomorphic on all of ∆R, by Theorem 3.5. 2

The next theorems concern holomorphic functions on complex manifolds
(i.e., functions holomorphic in each holomorphic chart).

Theorem 3.7 Let f be a bounded function holomorphic on the complement
Ω \ {g = 0} of a complex manifold Ω (e.g., Ω ⊂ Cn) to the zero set of
a locally non-constant holomorphic function g : Ω → C. Then f extends
holomorphically to all of Ω.

Proof Without loss of generality we consider that n = 2: the proof in
higher dimension is literally analogous. Fix a point p ∈ A = {g = 0}.
Let us show that f limits continuously to a neighborhood of the point p in
A and the limit is holomorphic. Fix a local holomorphic chart covering a
neighborhood of the point p, which is identified with a domain in C2. Fix
a complex line L through p where g|L 6≡ 0. Let us choose the coordinates
(z1, z2) in the above chart so that p = 0, L is the z1-axis. Then g(z1, 0)
is a non-constant holomorphic function in one variable, and the origin is
its isolated zero. Fix a circle C = {|z1| = σ} ⊂ C centered at 0 where
g(z1, 0) 6= 0. Fix a δ > 0 such that g 6= 0 on C×Dδ. The function f(z1, 0) is
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holomorphic and bounded on a punctured neighborhood of zero, and hence,
extends holomorphically there (theorem on erasing isolated singularities of
bounded holomorphic functions in one variable). Similarly, for every z2 ∈ Dδ

the function g(z1, z2) in z1 is non-constant and thus, has isolated zeros. The
latter are again removable singularities for f . Thus, f(z1, z2) is holomorphic
in z1 ∈ Dσ for every fixed z2 ∈ Dδ. Therefore,

f(z1, z2) =
1

2πi

∮
C

f(ζ, z2)

ζ − z1
dζ for every (z1, z2) ∈ ∆σ,δ = Dσ ×Dδ.

The latter subintegral expression is holomorphic in the bidisk ∆σ,δ and coin-
cides with f(z1, z2) in the complement of the set A. This yields the desired
analytic extension of the function f to a neighborhood of arbitrary point
p ∈ A and proves the theorem. 2

Theorem 3.8 Let Ω be a complex manifold, and let S ⊂ Ω be a complex
submanifold of codimension at least two. Then every function holomorphic
on Ω \ S extends holomorphically to all of Ω.

Proof Let k ≥ 2 be the codimension of the submanifold S. Fix an ar-
bitrary point p ∈ S and a holomorphic chart (z1, . . . , zn) identifying its
neighborhood U with a polydisk ∆R ⊂ Cn so that p corresponds to the
origin and the intersection S ∩U corresponds to the (n−k)-coordinate sub-
space (zk+1, . . . , zn), more precisely, the (n − k)-slice {0} × ∆Rn−k ⊂ ∆R,
Rn−k = (Rk+1, . . . , Rn). From now on we denote by S the latter slice.
Let f be a function holomorphic on ∆R \ S. Let us show that f extends
holomorphically to all of ∆R. This will imply the statement of the theo-
rem. Set t = (z1, . . . , zk), w = (zk+1, . . . , zn), Rk = (R1, . . . , Rk). For every
w ∈ ∆Rn−k the function f(t, w) is holomorphic in t ∈ ∆Rk \{0}, by assump-
tion. Therefore, it extends holomorphically to all of ∆Rk (Hartogs’ Theorem
3.5). Fix an arbitrary 0 < λ < 1, set Rkλ = λRk. Then for every t ∈ ∆λRk

and w ∈ ∆Rn−k one has k-dimensional Cauchy formula

f(t, w) = (
1

2πi
)k
∮
|ζ1|=λR1

. . .

∮
|ζk|=λRk

f(ζ, w)∏k
j=1(ζj − tj)

dζk . . . dζ1. (3.2)

The latter subintegral expression is holomorphic in z = (t, w) ∈ ∆λRk ×
∆Rn−k . Hence, the integral (3.2) extends the function f holomorphically
to the latter product for arbitrary 0 < λ < 1. In particular, the extended
function is holomorphic on S. The theorem is proved. 2
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4 Analytic sets

4.1 Definitions, main properties and Weierstrass Prepara-
tory Theorem

Definition 4.1 An analytic subset in a complex manifold M is a subset
A ⊂M such that each point p ∈ A has a neighborhood U = U(p) ⊂M where
there exists a finite collection of holomorphic functions f1, . . . , fk : U → C
such that

A ∩ U = {f1 = · · · = fk = 0};

in general the number k of functions may depend on the point p.

Remark 4.2 Each analytic subset is closed. Any holomorphic submanifold
is an analytic subset, but the converse is not true: the coordinate cross
{xy = 0} ⊂ C2 and the curve {y2 = x3} ⊂ C2 are analytic subsets but not
submanifolds.

The theory of analytic sets is one of the basic tools in analysis, complex
and algebraic geometry and in many related topics. The analytic subsets
behave somewhat line algebraic subsets. They have the following

Main properties of analytic sets.
1. Each analytic subset is a locally finite disjoint union of its regular part

(union of those points where it is locally a submanifold) and its complement,
the singular part;

2. The regular part is open and dense; the singular part is a smaller
analytic subset lying in the closure of the regular part;

3. Each analytic subset is stratified: it is a disjoint union of injectively
holomorphically immersed manifolds, which are called strata; each stratum
is contained either in its regular, or singular part;

4. Each analytic subset is a locally finite union of irreducible ones: those
that cannot be finite unions of two smaller analytic sets; their regular parts
are connected.

These properties will be proved later on for the analytic sets of codi-
mensions one and two. Afterwards we will state a fundamental result of the
theory, Remmert Proper Mapping Theorem (without proof).

In the proofs we will use the following obvious corollary of Theorem 3.7.

Corollary 4.3 Each holomorphic bounded function on a complement of a
complex manifold to an analytic subset extends holomorphically to the whole
ambient manifold.
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Proof The statement of the corollary is local: the function extends to
the analytic subset. Therefore, it suffices to prove it in the case, when the
ambient manifold is a polydisk ∆r and the analytic subset A ⊂ ∆r is the
intersection of zero sets Aj = {fj = 0}, fj : ∆r → C are non-constant
holomorphic functions, j = 1, . . . , k. Let f : ∆r \ A → C be a bounded
holomorphic function. Note that for every j the function f is holomorphic
and bounded on the domain ∆r \Aj , since the latter is contained in ∆r \A
by the inclusion A ⊂ Aj . Therefore, f extends holomorphically to Aj , and
hence, to all of ∆r, by Theorem 3.7. This proves the corollary. 2

First we will prove local versions of the above properties of analytic
sets in the case of codimension one, for zero loci of germs of holomorphic
function. The proofs are based on the next local theorems saying that
each holomorphic function is somewhat like a polynomial in one variable
with holomorphic coefficients in the other variables. To state them, let us
introduce the following definitions.

Definition 4.4 A polynomial Pw(z1) = zd1 + a1(w)zn−1
1 + · · ·+ a0(w) with

variable coefficients depending holomorphically on w = (z2, . . . , zn) from a
neighborhood of the origin in Cn−1 with aj(0) = 0 is called a Weierstrass
polynomial in z1.

Remark 4.5 For every fixed w a Weierstrass polynomial does not vanish
identically in z1 and has the same number d of roots counted with multi-
plicity.

Definition 4.6 A germ of holomorphic function f at the origin is a unity,
if f(0) 6= 0.

Theorem 4.7 (Weierstrass preparatory theorem). For every germ f
of holomorphic function at the origin in Cn such that f(0) = 0 and f(z1, 0) 6≡
0 there exists a unique Weierstrass polynomial Pw(z1) such that f(z1, w) =
h(z1, w)Pw(z1), where h is a unity.

Proof Fix δ > 0, r = (r2, . . . , rn), rj > 0, such that the function f is
holomorphic on Dδ × ∆r, f(z1, 0) 6= 0 for z1 ∈ Dδ \ {0} and f |∂Dδ×∆r 6=
0. Set gw(t) = f(t, w). The function g0 has geometrically unique zero in
Dδ: the origin. Let d denote its multiplicity. Then for every w ∈ ∆r the
function gw has d roots with multiplicities in Dδ and does not vanish on
its boundary. Let b1(w), . . . , bd(w) denote its roots. The coefficients of the
Weierstrass polynomial we are looking for are uniquely determined as the
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basic symmetric polynomials σs = σs(w) in bj(w) up to sign. (This already
proves the uniqueness.) They vanish at w = 0 by assumption. Let us show
that they are holomorphic functions in w. Indeed, they are expressed as
polynomials in the power sums σ̂s(w) =

∑
j b
s
j(w), s ∈ N. One has

σ̂s(w) =
1

2πi

∮
∂Dδ

ζs ∂f∂z1 (ζ, w)

f(ζ, w)
dζ. (4.1)

Indeed, the latter integral is equal to the sum of residues of the subintegral
expression. The nonzero residues may exist only at those ζ, where gw(ζ) =
f(ζ, w) = 0. The residue value corresponding to a root ζ of the function
gw(z1) of multiplicity ν is equal to νζs. Indeed, one has

gw(u) = f(u,w) = c(u− ζ)ν(1 +O(u− ζ)), as u→ ζ; c 6= 0,

∂f

∂z1
(u,w) = cν(u− ζ)ν−1(1 + o(1)) +O((u− ζ)ν) =

ν

u− ζ
f(u,w)(1 + o(1)).

This implies that the residue at ζ is equal to νζs. This proves (4.1). The
right-hand side in (4.1) is holomorphic in w ∈ ∆r, since the subintegral
expression is holomorphic and its restriction to the integration circle is a
uniformly bounded function whenever w run over arbitrary compact subset
in ∆r. Therefore, the integral and hence, the power sums σ̂s(w) are holo-
morphic on ∆r. Hence, the elementary symmetric polynomials σs are also
holomorphic. Therefore, the function

Pw(z1) =
d∏
j=1

(z1 − bj(w)) = zd1 +
d∑
s=1

(−1)sσs(w)zd−s1

is a Weierstrass polynomial vanishing exactly on the zero set Γ = {f =
0} of the function f . The ratio h = f

P is a holomorphic function on the
complement (Dδ × ∆r) \ Γ. Let us show that it extends holomorphically
to Γ and does not vanish there: then the theorem follows immediately. For
every fixed w it has a nonzero limit, as z1 tends to a root of the polynomial
P (z1, w), since the latter root has the same multiplicity for both functions
Pw(z1) and gw(z1). Therefore, the function h(z1, w) is holomorphic in z1 ∈
Dδ for every fixed w ∈ ∆r. Hence, it can be written as Cauchy integral

h(z1, w) =
1

2πi

∮
|ζ|=δ

h(ζ, w)

ζ − z1
dζ, z1 ∈ Dδ.

The subintegral expression is holomorphic in (z1, w) ∈ Dδ × ∆r and uni-
formly bounded with derivatives and continuous on compact subsets in
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Dδ ×∆r. Therefore, the latter integral, and hence h are holomorphic there.
The above limiting argument implies that h = f

P 6= 0 on Γ, and hence, is a
unity. This proves the theorem. 2

4.2 Factorization of holomorphic functions as product of ir-
reducible ones

Definition 4.8 A germ of holomorphic function is said to be irreducible,
if it is not a product of two holomorphic functions that are not unities. A
Weierstrass polynomial is irreducible at zero, if its germ at zero is irreducible
as a holomorphic function.

Theorem 4.9 Each Weierstrass polynomial admits a unique decomposition
as a product of irreducible Weierstrass polynomials up to permutation.

Theorem 4.10 A germ of holomorphic function f is irreducible, if and
only if the subset of points in {f = 0} where f has nonzero differential is
connected and dense.

Corollary 4.11 The ring of germs (local ring) of holomorphic functions
at 0 ∈ Cn is factorial: each function admits a unique decomposition as a
product of irreducible ones, up to multiplication by unities and permutations.

Proof Each function f is a Weierstrass polynomial P in generic local co-
ordinates, where f(z1, 0) 6≡ 0 up to multiplication by unity (Theorem 4.7).
Therefore, it admits a unique presentation as a product of irreducible Weier-
strass polynomials P = P1 . . . Pk (Theorem 4.9). Multiplying some of them
by the above unity, we get the desired decomposition of the initial function.
Let us now prove the uniqueness. Every factorization f = f1 . . . fk yields a
factorization P = P1 . . . Pk, where Pj are the Weierstrass polynomials rep-
resenting fj . This together with the uniqueness of the latter implies the
corollary. 2

Theorems 4.9 and 4.10 can be proved by induction in n by using the
following well-known facts from algebra:

Gauss Lemma: if a ring R is factorial, then the corresponding polyno-
mial ring R[t] is also factorial.

If a ring R is factorial and u, v ∈ R[t] are coprime, then there exist
coprime elements α, β ∈ R[t] and γ ∈ R, γ 6= 0, such that

αu+ βv = γ.
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To make proofs self-contained, we will provide another, geometric argu-
ment. To motivate it, let us consider the following two basic examples.

Example 4.12 The Weierstrass polynomial z2
1 − z2

2 is not irreducible (its
germ at the origin is not irreducible): it is the product (z1 − z2)(z1 + z2) of
two irreducible Weierstrass polynomials of degree one. Its zero locus Γ is a
union of their zero loci: the lines Γ± = {z1 = ±z2}. The punctured zero
locus Γ0 = Γ\{0} is disconnected and consists of two connected components
Γ0
±: the punctured zero loci of irreducible factors.

Example 4.13 The germ at 0 of the Weierstrass polynomial z2
1 − z2 is

irreducible: it has a nonzero linear part z2, and hence, cannot be a product
of two holomorphic functions vanishing at the origin. Its punctured zero
locus Γ0 is connected: it is the Riemann surface of the square root z1 =√
z2 parametrized bijectively holomorphically by z1 6= 0. In both this and

previous examples the projection of the punctured zero locus Γ0 to the z2-
space is a double covering.

To make the presentation self-contained, let us recall the definition of
covering.

Definition 4.14 A continuous mapping π : S1 → S2 of topological spaces is
a covering, if each point p ∈ S2 has a neighborhood U = U(p) ⊂ S2 such that
π−1(U) is a disjoint union of domains Vr ⊂ S1 that are homeomorphically
projected by π onto the domain U . The space S2 is called the base of the
covering, and S1 is called the total (covering) space.

Example 4.15 Let π : S1 → S2 be a covering, and let S2 be path con-
nected. Then any two points p1, p2 ∈ S2 have the same number of preimages
in S1 (finite or infinite). This comes from the covering homotopy property:
for every path α : [0, 1] → S2 and every point q ∈ π−1(α(0)) there exists
a unique path α̃ : [0, 1] → S1 such that α̃(0) = q and π ◦ α̃ ≡ α. If S2 is
a manifold, then S1 inherits a natural structure of manifold lifted from the
base S2 via the projection.

Remark 4.16 Let π : S1 → S2 be a covering, and let S1 and S2 be oriented
manifolds, S2 being connected. Let the above number of preimages be finite.
For every p ∈ S2 and q ∈ π−1(p) let us count q with the weight “+1” if
dπ(q) : TqS1 → TpS2 preserves the orientation (its determinant is positive
with respect to orienting bases in the latter tangent spaces) and with the
weight “−1” otherwise. Then the total sum of weights of preimages of a
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given point p ∈ S2 does not depend on p and is called the degree of the
covering.

Example 4.17 The natural projection R → R/Z = S1 of the line to the
circle is a covering where each point has infinite number of preimages. The
mapping S1 → S1 induced by any integer homothety R → R: x 7→ nx,
n ∈ Z, is a covering of degree n.

Remark 4.18 Each complex manifold carries a natural orientation. Thus,
each holomorphic covering over a connected complex manifold has a positive
degree. We will be interested in the situation, when the base of a covering
is the complement of a connected complex manifold ∆ to an analytic sub-
set A ⊂ ∆. The latter complement is always connected. Indeed, the zero
locus of a non-constant holomorphic function is locally the zero locus of a
Weierstrass polynomials and has real codimension two. In more detail, the
zero locus of a Weierstrass polynomial Pw(z1) of degree d cuts each z1-fiber
C × {w} by at most d points. Hence, the z1-fibers of its complement are
locally finitely punctured topological disks and hence, are connected. This
together with continuous dependence of the collection of roots on the param-
eter w easily implies the connectedness of the complement of a polydisk to a
zero locus of holomorphic function and hence, the general above connectivity
statement.

For the proof of Theorems 4.9 and 4.10 we fix δ > 0, r = (r2, . . . , rn),
rj > 0, set ∆ = ∆r, such that Pw(z1) is holomorphic on Dδ ×∆ and

Pw(z1) 6= 0 for every (z1, w) ∈ ∂Dδ ×∆. (4.2)

For every w ∈ ∆ we denote by k(w) the number of geometrically distinct
roots of the polynomial Pw(z1). Set

kmax = max
w∈∆

k(w),

A = {w ∈ ∆ | k(w) < kmax},

Γ = {Pw(z1) = 0} ⊂ Dδ ×∆, Γ0 = Γ \ π−1(A).

The proof will be split into the following steps.
Step 1: we prove analyticity of the subset A ⊂ ∆.
Step 2: we show that the projection π : Γ0 → ∆\A is a covering of degree

kmax. We denote Γ1, . . . ,Γs the connected components of the covering space
Γ0. Each point z = (z1, w) ∈ Γj has multiplicity µ(z): this is the multiplicity
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of the root z1 of the polynomial Pw. We show that the latter multiplicity
µj = µ(z) is constant on each Γj . Let dj denote the degree of the covering
π : Γj → ∆ \ A. For every w ∈ ∆ \ A let tj1(w), . . . , tjdj (w) denote the
z1-coordinates of the points of intersection π−1(w) ∩ Γj . Set

hj,w(z1) =

dj∏
m=1

(z1 − tjm(w)).

We get that

Pw(z1) =
s∏
j=1

(hj,w(z1))µj . (4.3)

Step 3: we show that the set Γ0 is locally defined (in some neighborhood
of each its point) as a zero locus of a holomorphic function with nonzero
partial derivative in z1. This together with the covering property (Step 2)
implies that each point w ∈ ∆ \A has a neighborhood U ⊂ ∆ \A such that
Γ0 ∩ π−1(U) is a disjoint union of graphs of holomorphic functions z1(w).
Hence, the coefficients of the polynomials hj,w(z1) depend holomorphically
on w ∈ ∆ \ A. They are bounded, being symmetric functions (up to sign)
of some roots of the polynomials Pw(z1), which are bounded: the roots lie
in Dδ for all w ∈ ∆ by assumption (4.2). Therefore, the latter coefficients
are holomorphic on all of ∆ (Corollary 4.3). They vanish at 0 by definition,
hence, hj,w(z1) are Weierstrass polynomials.

Step 4: we show that the polynomials hj,w are irreducible. This will
easily imply both theorems.

The proof of Step 1 is based on the two following statements on polyno-
mials in one variable.

Theorem 4.19 Two polynomials P1(t) and P2(t) in one variable of degrees
d1 and d2 respectively have at least l common roots (with multiplicities), if
and only if the polynomials

P1(t), tP1(t), . . . , td2−lP1(t), P2(t), . . . , td1−lP1(t)

are linearly dependent: that is in the (d1 + d2 − l + 1)× (d1 + d2 − 2l + 2)-
matrix of their coefficients all the d1 + d2 − 2l + 2-minors vanish.

Proof The existence of at least l common roots is equivalent to the fact
that the greatest common divisor h of the polynomials P1 and P2 has degree
at least l. Set Pj = hqj : then q1 and q2 are coprime of degrees at most
dj − l. The latter statements are equivalent to the equality P1q2−P2q1 = 0,
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degqj ≤ dj − l. The latter is equivalent to linear dependence of the above
collection of polynomials. The theorem is proved. 2

Remark 4.20 In the case, when l = 1, the above matrix of coefficients is
square and its determinant equals the resultant of the polynomials P1, P2.

Proposition 4.21 Let P (t) be a polynomial in one variable, d be its degree,
and let k be the number of its geometrically distinct roots (i.e., the roots
without multiplicity). Then the number of common roots with multiplicities
of the polynomial P and its derivative P ′ equals d− k.

Proof Each root of the polynomial P of multiplicity ν is a root of its deriva-
tive with multiplicity ν − 1. Thus, it is their common root of multiplicity
ν − 1. Summing up the latter numbers through all the roots yields d − k.
This proves the proposition. 2

Proof of Step 1: analyticity of the set A. Note that k(w) = kmax on
an open subset in ∆. This follows by definition and from the fact that if
we perturb a polynomial continuously, then the number of its geometrically
distinct roots may only increase: thus, if we perturb Pw0 with k(w0) = kmax

in the family Pw, the number k(w) remains constant. The subset A ⊂ ∆
coincides with the subset of those points w for which the polynomial Pw
and its partial derivative in z1 have at least l = d− kmax + 1 common roots
(Proposition 4.21). For every w let M(w) denote the coefficient matrix from
Theorem 4.19 corresponding to the latter polynomials and l. Then the set
A is defined by vanishing of its 2kmax + 1-minors (Theorem 4.19). Hence, A
is analytic, since the matrix coefficients are holomorphic on ∆. 2

Proof of Step 2 and factorization (4.3). Recall that the complement
∆\A is connected (Remark 4.18). As w ∈ ∆\A varies, the roots of the poly-
nomial Pw(z1) vary continuously and their multiplicities remain unchanged.
Indeed, the contrary would imply that some multiple root splits into several
ones under perturbation, the number of geometrically distinct roots increases
and becomes greater than kmax – a contradiction. This implies that each
point p ∈ ∆ \ A has a neighborhood U ⊂ ∆ \ A such that π−1(U) ∩ Γ0 is a
union of graphs of continuous functions z1(w). This proves that the projec-
tion π : Γ0 → ∆ \ A is a covering of degree kmax. Let Γ1, . . . ,Γs denote the
connected components of the covering space Γ0. For every j = 1, . . . , s the
points (z1, w) of the component Γj correspond to roots z1 of the polynomials
Pw(z1) having the same multiplicity µj independent on (z1, w) ∈ Γj (con-
stance of multiplicity under deformation, see the above argument). Step 2
is proved, and it implies the factorization (4.3). 2
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Proof of Step 3: hj,w(z1) are Weierstrass polynomials with coeffi-
cients holomorphic on ∆. Every point p ∈ Γj has a small neighborhood

where the function gj = (Pw(z1))
1
µj is holomorphic. Indeed, the latter func-

tion is well-defined and holomorphic on the complement of a small neighbor-
hood of the point p to the zero locus {Pw(z1) = 0} (which locally coincides
with Γj). It is obviously bounded. Therefore, it is holomorphic in the whole
neighborhood, including the zero locus (Theorem 3.7). This together with
the discussion in Step 3 implies all its statements. 2

Now let us prove Step 4: irreducibility of polynomials hj,w. It is implied
by the following general statement.

Proposition 4.22 A polynomial Pw(z1) is irreducible, if and only if s = 1
and µ1 = 1.

Proof In the case, when either s ≥ 2, or µj ≥ 2 for some j = 1, . . . , s
the polynomial is obviously not irreducible, since it is equal to a nontrivial
product (4.3). Let now s = 1, µ1 = 1. Let us show that Pw is irreducible.
Let there exist a holomorphic function g(z) that is a divisor of the function
Pw(z1) different from unity. It suffices to show that g(z) = Pw(z1) up to
multiplication by unity. The zero locus S = {g = 0} is non-empty and
contained in Γ = {Pw(z1) = 0}. In particular, g does not vanish identically
on the z1-axis. Therefore, without loss of generality we consider that g =
gw(z1) is a Weierstrass polynomial. By construction, for every w ∈ ∆\A each
root of the polynomial gw(z1) is a simple root of the polynomial Pw. Hence,
it should be simple for gw as well (since gw divides Pw). This together with
the results of Steps 2, 3 (applied to gw) implies that the set S0 = S \π−1(A)
is a covering over the domain ∆ \ A under the projection π. On the other
hand, S0 is contained in a connected covering Γ0. Hence, S0 ⊂ Γ0 is an
open and closed subset in a connected set Γ0, and thus, S0 = Γ0. Thus, gw
and Pw have the same roots for w ∈ ∆ \A, and they are simple for both of
them. Hence gw(z1) ≡ Pw(z1). The proposition is proved. 2

Proof of Theorems 4.9 and 4.10. Theorem 4.10 follows immediately
from Proposition 4.22. Let us prove Theorem 4.9.

The above proposition implies that polynomials hj,w in formula (4.3)
are irreducible. This yields a factorization of the Weierstrass polynomial Pw
under consideration as a product of irreducible ones. The same proposition
implies the uniqueness: the complement to π−1(A) of the zero locus of an
irreducible factor of the polynomial Pw should coincide with some of the sets
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Γj , and thus, it should coincide with hj,w by the same proposition. Theorem
4.9 is proved. 2

4.3 Implicit Function and Rank Theorems. Weierstrass poly-
nomials in two variables

Theorem 4.23 (Holomorphic Implicit Function Theorem) Let F :
Cn × Cl → Cl, (X,Y ) 7→ F (X,Y ) be a germ of holomorphic mapping at
zero, F (0, 0) = 0, such that the partial differential ∂F

∂Y (0) : T0Cl → T0Cl is a
non-degenerate linear operator. Then there exists a neighborhood U = V ×W
of the origin in Cn ×Cl such that the intersection U ∩ {F = 0} is the graph
{Y = Y (X)} of a holomorphic mapping Y : W → V . Its differential dY (X)
at each point X0, set Y0 = Y (X0), is equal to (∂F∂Y )−1(X0, Y0) ∂F∂X (X0, Y0)dX.
That is, the latter matrix product is equal to the Jacobian matrix of the
mapping Y (X) at X0.

Proof Consider the mapping F as a real mapping R2n×R2l → R2l, which
is a C∞ mapping, since each holomorphic function is infinitely differen-
tiable. The non-degeneracy of its partial differential in Y is equivalent to
the same non-degeneracy statement for the real mapping. The classical
Implicit Function Theorem says that for appropriate U = V ×W the in-
tersection U ∩ {F = 0} is the graph of a smooth mapping Y : W → V ,
whose differential is equal to the above product. The partial differentials
of the function F in the latter product are C-linear, since F is holomor-
phic. Therefore, the product dY (X) is also C-linear at each point in W ,
and hence, Y is holomorphic. The theorem is proved. 2

Recall the following definition.

Definition 4.24 A mapping F : U → V of complex domains (manifolds)
is biholomorphic, if it is holomorphic and has a holomorphic inverse. A
biholomorphic germ of mapping (Cn, 0)→ (Cn, 0) is defined analogously.

Corollary 4.25 A germ of mapping G : (Cn, 0)→ (Cn, 0) with non-degenerate
differential dG(0) is always biholomorphic.

Proof It suffices to apply the Implicit Function Theorem to the function
F (X,Y ) = G(Y )−X. 2

Remark 4.26 Each biholomorphic mapping is always a C∞ diffeomor-
phism. There exist no biholomorphic mappings of domains of different di-
mensions, since this is true for diffeomorphisms.

25



Theorem 4.27 (Constant Rank Theorem). Let F : (Cn, 0) → (Cm, 0)
be a germ of holomorphic mapping at the origin, F (0) = 0, and let its differ-
ential have constant rank l ≤ m in some neighborhood of the origin. Then
there exist germs of biholomorphisms (coordinate changes) g : (Cn, 0) →
(Cn, 0), h : (Cm, 0)→ (Cm, 0) such that h ◦ F ◦ g(z1, . . . , zn) = (z1, . . . , zl).

The proof of this theorem repeats the classical proof of the similar the-
orem from calculus. One has just to notice that the differentials of the
mappings g, h constructed in the classical proof are C-linear, and hence, the
mappings are holomorphic.

Theorem 4.28 For every irreducible germ of holomorphic function f at
zero, f(0) = 0, the regular part of its zero locus Γ = {f = 0} consists
exactly of those points z ∈ Γ where df(z) 6= 0.

Proof We know that each point of the zero locus where the differential is
not identically zero is a regular point (Implicit Function Theorem). Let us
prove the converse. To do this, we have to show that every point p ∈ Γ
where df(p) = 0 cannot be a regular point: the germ at p of the zero locus
is not a submanifold. Suppose the contrary: it is a submanifold. Then
there exist a neighborhood U of the point p in Cn and local coordinates
z1, . . . , zn on U such that U ∩ Γ = {z1 = 0}. Therefore, f(z) = z1g(z) in

U , where g = f(z)
z1

is a holomorphic function on U . One has g(p) = 0, since
df(p) = 0. Note that we already know that df 6= 0 on an open and dense
subset Γ0 ⊂ Γ. Hence, g(z) does not vanish identically on the intersection
U ∩Γ. This implies that the germ Γg at p of the zero locus of the function g
does not contain the germ of the hyperplane {z1 = 0}. On the other hand,
the intersection Γ ∩ U should contains the zero locus of the function g, and
hence, contains those its points that do not lie in the latter hyperplane, – a
contradiction to the assumption that the latter intersection is contained in
the hyperplane. The complement Γg \ {z1 = 0} is indeed non-empty. This
can be easily seen if we consider (without loss of generality) that g is a germ
at p of Weierstrass polynomial: then for some value of z2 it obviously has a
non-zero root. The theorem is proved. 2

Addendum to Theorem 4.28. Let f : (Cn, 0) → C be a germ of
holomorphic function at zero, f(0) = 0. Let f be a product of distinct
irreducible factors, each of them being taken in power one. Then the singular
part of the germ at 0 of the zero locus A = {f = 0} coincides with the set
of those points p where df(p) = 0.
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Proof Let f = h1 . . . hr, hj be irreducible germs. For every j let A0
j ⊂ A

denote the set of those regular points p of the zero locus {hj = 0} where
hs(p) 6= 0 for every s 6= j. Set A0 = ∪jA0

j . The differential of the function f

does not vanish at the points of the set A0, by definition and Theorem 4.28.
Hence A0 ⊂ Areg, A \ A0 ⊃ Asing. The latter complement A \ A0 coincides
with Asing: each its point is singular, being either an intersection point of
zero loci of distinct irreducible factors, or a singular point of zero locus of an
irreducible factor. Therefore the differential of the function f should vanish
there. This proves the addendum. 2

Now let us study in more detail irreducible germs of functions and Weier-
strass polynomials Pz2(z1) in two variables.

Theorem 4.29 Let f(z1, z2) be an irreducible germ of holomorphic func-
tion. Then there exists a germ of holomorphic mapping g(t), g : (C, 0) →
(C2, 0) that maps bijectively a neighborhood of the origin onto a neighborhood
of the origin in the zero locus {f = 0}.

Proof Without loss of generality we consider that f = Pz2(z1) is a Weier-
strass polynomial, choosing appropriate coordinates. Let d denote its degree.
Fix δ, r > 0 such that Pz2(z1) 6= 0 for every (z1, z2) ∈ ∂Dδ ×Dr. Then the
d roots of the polynomial Pz2(z1) with fixed z2 (which are concentrated at
0, when z2 = 0) do not escape from the disk Dδ, as we deform z2 from the
origin to an arbitrary point in Dr. Set

Γ = {P = 0} ∩Dδ ×Dr, Γ0 = Γ \ {0}, D0
r = Dr \ {0}.

Let π : (z1, z2) 7→ z2 be the standard projection. If r is chosen small enough,
then the mapping π : Γ0 → D0

r is a covering of degree d, see Step 2 in
the proof of Theorem 4.9. Indeed, here A is an analytic subset of one-
dimensional disk ∆r = Dr. Hence, is a discrete collection of points including
the origin, since a zero of a non-constant holomorphic function is always
isolated. Taking r small enough, we can achieve that A = {0}, and hence,
π|Γ0 is a covering. Note that the covering space Γ0 is a connected manifold,
by irreducibility and Theorem 4.10.

In what follows we use the next proposition.

Definition 4.30 Two coverings over the same base are isomorphic, if there
exists a homeomorphism between their covering spaces that forms a com-
mutative diagram with the projections.
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Proposition 4.31 Every connected covering π : Γ0 → D0
r of any degree

d > 0 over punctured disk D0
r ⊂ C is isomorphic to the d-power πd : D0

r
1
d
→

D0
r : t 7→ td. There are exactly d covering isomorphisms from the latter

covering to the former: any two of them are obtained by coordinate change
t 7→ e2πi p

d t.

Proof Consider a marked point s ∈ D0
r and a closed path α : [0, 1] → D0

r

with base point α(0) = s making one counterclockwise turn around the
origin, e.g., going along the circle centered at zero of radius |s|. For every
ŝ ∈ π−1(s) it lifts to a unique path α̂ : [0, 1]→ Γ0, α(0) = ŝ, π ◦ α̂ = α. The
mapping α̂(0) 7→ α̂(1): π−1(s)→ π−1(s) is well-defined (covering homotopy
property) and is a bijection: a permutation of covering preimages. It is
a cyclic permutation of order d. Indeed, the fundamental group of the
punctured disk is isomorphic to Z and generated by [α]. It should act
transitively on the above preimages, by connectivity, and hence, is a cyclic
permutation.

Fix a preimage t0 ∈ π−1
d (s) under the power covering. Consider an

arbitrary point t in the punctured disk D0

r
1
d

and an arbitrary path α̃ :

[0, 1] → D0

r
1
d
, α̃(0) = t0, α̃(1) = t. Set α(u) = (α̃(u))d = πd ◦ α̃(u): this

is a path α : [0, 1] → D0
r starting at s. Let us fix an arbitrary preimage

τ0 ∈ π−1(s) and consider the lifting to Γ0 of the path α with the base point
τ0. This yields a path α̂ : [0, 1]→ Γ0, α̂(0) = τ0, π ◦ α̂ = α. Set

g(t) = gτ0(t) = α̂(1) ∈ Γ0.

The point g(t) depends only on t, and not on α̃. Indeed, if two paths β1

and β2 go from t0 to t, then the product β̃ = β1β
−1
2 is a closed path in

the covering punctured disk. Therefore, its projection β is homotopic to a
power [α]m that acts by trivial permutation on the preimage π−1

d (s). The
number m is divisible by d, since the permutation given by [α] is cyclic. This
implies that it also acts trivially on the preimages of the other covering π.
Equivalently, each lifting to Γ0 of the path β is a closed path. Equivalently,
liftings to Γ0 of projections of the paths β1, β2 with the same base point in Γ0

have common end. This proves independence of the value g(t) on the choice
of path. By construction, t 7→ g(t) is a covering isomorphism. It depends
on the choice of the preimage τ0. Or equivalently, fix a τ0 and choose t0:
its choice is unique up to multiplication by a d-th root of unity; we have
d possible choices. The latter multiplications are all the automorphisms of
the power covering πd. This implies the statements of the proposition. 2
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Let g : D0

r
1
d
→ Γ0 be a covering isomorphism given by the above propo-

sition. It is bijective, extends homeomorphically to the puncture as g(0) = 0
and is a holomorphic C2-valued vector function in the punctured disk, by
construction. It extends holomorphically to the puncture 0, since it extends
continuously there and by erasing singularity theorem for holomorphic func-
tions in one variable. This proves Theorem 4.29. 2

Corollary 4.32 Let Γ be the zero locus of an irreducible germ of holomor-
phic function f(z1, z2) at zero, f(0) = 0. The tangent lines TzΓ

0, z ∈ Γ0

tend to a limit line L through the origin, as z → 0, which we call the tangent
line to Γ at the origin. The radial line of a point z ∈ Γ0 also tends to the
same limit line L, as z → 0.

Addendum to the corollary. In the conditions of the corollary con-
sider the lower homogeneous part of the function f :

f(z) = Pd(z) +O(|z|d+1), (4.4)

where Pd(z) is a homogeneous polynomial of degree d in variables z =
(z1, z2). Then Pd|L ≡ 0.
Proof The parametrization g(t) of zero locus being holomorphic at the
origin, it has the form g(t) = (g1(t), g2(t)), gj(t) = cjt

pj (1 + O(t)), cj 6= 0,
pj ∈ N. Choosing appropriate coordinates, we can and will consider that

p2 > p1. The slope g2(t)
g1(t) of the radial line through z = g(t) obviously tends

to zero, and hence the radial line tends to the z1-axis. The slope of the

tangent line TzΓ is the ratio of derivatives
g′2(t)
g′1(t))

= c2p2
c1p1

tp2−p1(1 + o(1)). It

tends to zero, as t → 0. Therefore, the tangent line tends to the z1-axis.
The corollary is proved.

For the proof of the addendum we have to show that Pd(z1, 0) ≡ 0.
Suppose the contrary: the polynomial Pd(z1) contains the monomial zd1 with
nonzero coefficient, say equal to one. Then, f(g(t)) = cd1t

dp1(1 + o(1)), as
t→ 0. Hence, f(g(t) 6= 0 for arbitrarily small t and thus, f does not vanish
on its zero locus, – a contradiction. The addendum is proved. 2

The next lemma and corollary provide a necessary condition for irre-
ducibility of a function in two variables in terms of its lower Taylor terms.

Lemma 4.33 Let f(z1, z2) be a germ of holomorphic function at zero, f(0) =
0, and let Pd be its lower homogeneous part, see (4.4). Let L be a complex
line contained in the zero locus {Pd = 0}. Then there exists at least one
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irreducible component of the zero locus {f = 0} that is tangent to L at the
origin.

Proof Let us choose the coordinates (z1, z2) so that L is the z1-axis and
Pd does not vanish identically on the z2-axis. Let µ denote the multiplicity
of the line L as a zero line of the polynomial Pd. Set w = z2

z1
, and let us

write the functions f and Pd in the coordinates (z1, w). One has

Pd(z1, z2) = zµ2

d∏
j=µ+1

(z2 − αjz1), αj ∈ C \ {0},

zp1z
q
2 = zp+q1 wq, z−d1 Pd(z1, z2) = G(w) = wµ

d∏
j=µ+1

(w − αj),

F (z1, w) = z−d1 f(z1, z2) = G(w) +O(z1). (4.5)

In more detail, fix an arbitrary δ > 0. Then the latter asymptotic formula
holds, as |w| ≤ δ and z1 → 0. Fix the above δ to be less than minj |αj |.
Consider the restriction to Dδ × {z1} of the functions F and G.

Claim. The function F (z1, w) in w with fixed z1 has µ zeros in Dδ,
whenever z1 is small enough.
Proof The only zero of the function G(w) in Dδ is the center of the disk,
which has multiplicity µ. The function G(w) does not vanish on ∂Dδ and
thus, the increment of its argument along the boundary equals 2πd. This
together with (4.5) implies that the latter statement holds for the function
F (z1, w) in w with fixed z1, whenever z1 is small enough. This together with
the Argument Principle applied to F proves the claim. 2

The claim holds for δ being arbitrarily small. This implies that there
exists a sequence of points pn ∈ {f = 0} converging to the origin so that
their radial lines tend to the z1-axis: the line L. This together with Corollary
4.32 implies that there exists an irreducible component of the zero locus of
the function f that is tangent to L at the origin. This proves the lemma. 2

Corollary 4.34 Let a germ at 0 of function f(z1, z2), f(0) = 0 be irre-
ducible. Then the zero locus of its lower homogeneous part Pd, see (4.4),
consists of just a unique complex line through the origin.

Proof If the lower homogeneous part vanishes on at least two distinct lines,
then we would have at least two distinct irreducible components of the zero
locus {f = 0} tangent to them. This implies that f cannot be irreducible.
The corollary is proved. 2
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4.4 Irreducibility of analytic sets

In the previous subsections we have been mostly discussing irreducibility of
germs of holomorphic functions. Here we discuss irreducibility of (germs of)
analytic sets and show that zero locus of a germ of irreducible function is
irreducible.

Proposition 4.35 Every connected complex manifold is an irreducible an-
alytic set.

Proof Suppose the contrary: let M be a connected complex manifold that
is a union of two distinct analytic subsets A1, A2 6= M . They are closed
subsets in M . We claim that IntAj = ∅. Indeed, let, by contradiction,
IntA1 6= ∅, p ∈ ∂A1. Let U be a connected neighborhood of the point p
where A1∩U is defined as zero locus of collections of holomorphic functions
on U . Thus, there exists a non-constant holomorphic function f : U → C
that vanishes on A1 ∩ U : A1 ∩ U 6= U , since p ∈ ∂A1. The nonconstant
function f vanishes on a nonempty open subset IntA1∩U , – a contradiction
to the uniqueness of analytic extension. Hence, Aj are closed nowhere dense
subsets in M , and their complements M \Aj are open and dense. Therefore,
the intersection M \ (A1 ∪A2) is open and dense, and hence, is non-empty.
The contradiction thus obtained proves the proposition. 2

General fact: For every analytic set A ⊂M the set Areg consists of its
regular points: those points where A is locally a submanifold. That is for
every p ∈ Areg there exists a neighborhood U = U(p) ⊂ M such that there
exist local coordinates (z1, . . . , zn) on U in which A ∩ U = {z1 = · · · = zj =
0}; the number j is called the local codimension of the set A at the point p;
the number n− j is called its local dimension. The subset Areg ⊂ A is open
and dense.

The openness of the set Areg is obvious. Its density is a theorem, which
we will use but will not prove in the cours.

Theorem 4.36 An analysis set A is irreducible, if and only if Areg is con-
nected.

Proof that connectivity implies irreducibility. Suppose the contrary:
A is a union of two analytic sets A1, and A2; Aj 6= A. None of them contains
Areg: if Aj ⊃ Areg, then Aj = A, since Aj is closed and Areg is dense.
The subsets Bj = Aj ∩ Areg ⊂ Areg are analytic subsets of the connected
manifold Areg, Bj 6= Areg, and their union is Areg, – a contradiction to the
above proposition. This proves the implication. 2
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We have been already working with germs of analytic subsets (germs
of hypersurface: zero locus of germ of function). Let us recall the general
notion of germ of a subset.

Definition 4.37 Let M be a topological space, p ∈M . Two subsets A,B ⊂
M are p-equivalent, if there exists a neighborhood U = U(p) ⊂ M where
A ∩ U = B ∩ U . A germ of subset at p is a class of p-equivalent subsets.
The germ at p of a subset A will be denoted (A, p). A union of two germs
(A, p)∪ (B, p) is the germ at p of the union A∪B. A germ of analytic subset
at a point p in a complex manifold M is a germ of analytic subset A defined
in some neighborhood of the point p. A germ of subset (A, p) is connected,
if it has a connected representative in arbitrarily small neighborhood of the
point p.

Definition 4.38 A germ of analytic subset (A, p) is irreducible, if it is not
a union of two germs (A1, p)∪ (A2, p), (Aj , p) 6= (A, p). Or equivalently, if it
has an irreducible representative: an irreducible analytic subset in arbitrarily
small neighborhood of the point p.

Corollary 4.39 A germ of analytic set (A, p) is irreducible, if and only if
(Areg, p) is connected.

The corollary immediately follows from the above theorem.
Now let us recall what was already proved for a germ (Γ, 0) of zero locus

Γ = {f = 0}

of a germ of non-constant holomorphic function f , f(0) = 0.
Consider the coordinates (z1, w), w = (z2, . . . , zn), where the function f

is represented by a Weierstrass polynomial Pw(z1). Fix a product Dδ ×∆r,
Dδ ⊂ C, ∆r ⊂ Cn−1, such that f is holomorphic on Dδ ×∆r,

fDδ×{0} has unique zero at the origin and f |∂Dδ×∆r 6= 0.

Let π : (z1, w) 7→ w denote the standard projection. There exists an analytic
subset A ⊂ ∆r such that

π : Γ0 = Γ \ π−1(A)→ ∆r \ π−1(A) is a covering of some finide degree d.

The covering space has a natural structure of complex manifold, for which
the inclusion Γ0 → Cn is holomorphic. It is open and dense subset in Γ that
is contained in Γreg.

1) A germ f is irreducible, if and only if the covering manifold Γ0 is
connected. In this case Γ0 = Γreg.
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Corollary 4.40 The zero locus of a germ of irreducible holomorphic func-
tion is a germ is of irreducible analytic set.

2) Let f be an irreducible germ. Then the singular part Γsing = Γ \ Γreg
of its zero locus is an analytic set: it is defined by equations{

f = 0
∂f
∂zj

= 0 for every j = 1, . . . , n
,

by Theorem 4.28.
3) Each germ f is a product

f =
s∏
j=1

h
µj
j , hj are irreducible.

This factorization is unique up to multiplication by unities and permuta-
tions. This yields a decomposition

Γ = ∪sj=1Γs, Γj = {hj = 0},

the germs Γj are irreducible.

Proposition 4.41 The above set A ⊂ ∆r is a hypersurface: the zero locus
of a holomorphic function on ∆r.

Proof Recall that the set A is defined by the condition on w saying that
the polynomial Pw(z1) has more root collisions than typically.

Case 1): the polynomial Pw(z1) is irreducible. Then for a typical w the
polynomial Pw(z1) has simple roots. Thus, the set A corresponds to those
w for which it has at least one multiple root, that is, a common root with
its partial derivative in z1. Hence, A is the zero locus of the resultant of the
polynomial and its derivative in z1. The resultant is holomorphic in w ∈ ∆r,
being polynomial in the coefficients of Pw(z1).

Case 2): the polynomial Pw(z1) is the product of powers of irreducible
polynomials hj,w(z1), j = 1, . . . , s. For every j let Aj ⊂ ∆r denote the above
analytic subset corresponding to the polynomial hj,w: it is the zero locus
of the resultant of the latter polynomial and its derivative in z1. For every
k, l = 1, . . . , s, k 6= l let Akl denote the zero locus of the resultant of the
polynomials hk,w(z1) and hl,w(z1). Then one has A = ∪jAj ∪(∪k 6=lAkl), and
it is the zero locus of the product of all the above resultants. The proposition
is proved. 2
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Theorem 4.42 Let A be a (germ of) analytic set. Then it admits a unique
presentation as a union A = ∪sj=1Aj of irreducible ones.

We will not present a proof of the existence: we will prove only the
uniqueness.
Proof of the uniqueness. Let A = B1 ∪ B2, Bj 6= A. It suffices to
show that each Bj is a union of some Ak. Suppose the contrary: say, the
intersection B1∩Ak is non-empty and smaller than Ak. Then Ak = C1∪C2,
Cj = Bj ∩Ak 6= Ak are analytic sets, – a contradiction to the irreducibility
of the subset Ak. The uniqueness is proved. 2

Definition 4.43 The dimension of a (germ of) irreducible analytic set A
is the dimension of its regular part (which is a connected manifold). The
dimension of an arbitrary analytic set A at its point p is the maximal di-
mension of irreducible component of its germ at p. Or equivalently, it is the
maximal of the dimensions of irreducible components containing p. If all
the irreducible components of an analytic set have dimension k, then we say
that A is of pure dimension k.

4.5 Covering presentation and Proper Mapping Theorem

Here we discuss covering presentation of analytic subsets in general. Then
we state one of the key results of the theory of analytic sets: Remmert
Proper Mapping Theorem.

Theorem 4.44 Let S be a germ of analytic set of pure dimension k at the
origin in Cn. Then its projection to a generic k-dimensional subspace E
can be presented as a covering of finite degree over a polydisk ∆ ⊂ E that is
ramified over an analytic hypersurface: zero locus of a holomorphic function
on ∆.

We have already proved the theorem in the case of codimension one: for
zero loci of holomorphic functions. We have shown that the projection is
a covering of finite degree that is ramified (has colliding preimages) over
an analytic subset A ⊂ ∆ that is a zero locus of holomorphic function, see
Proposition 4.41.

Now let us prove the theorem in the case of codimension two, more
precisely, when S is the intersection of zero loci of two coprime irreducible
holomorphic functions.
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Proof in codimension two (sketch). Let P1,w(z1), P2,w(z1) be distinct
irreducible Weierstrass polynomials. Set

Γj = {Pj,w(z1) = 0}, S = Γ1 ∩ Γ2.

Then the polynomials are coprime. Indeed, otherwise P1,w(z1) should vanish
on an open subset of the connected manifold Γ2,reg, and hence, on all of Γ2,
and the same should hold for interchanged polynomials. Then P1,w and P2,w

divide each other, and hence, are equal, being monic polynomials in z1, – a
contradiction.

Consider the resultant γ(w) of polynomials P1,w(z1), P2,w(z1) as poly-
nomials in one variable z1. Let dj be their degrees in z1. The resultant
is obviously a polynomial function of their coefficients, and hence, is holo-
morphic in w. The projection π : (z1, w) 7→ w maps S onto the zero locus
Σ = {γ = 0}, and each point in Σ has a finite number of preimages, no
greater than minj dj . Now we can represent γ as a Weierstrass polynomial,
say, in z2 choosing appropriate coordinates. Then, its zero locus will be
projected with finite degree onto a polydisk in some n− 2-dimensional sub-
space. Finally, the composition of the above projections maps S with a
finite degree onto the latter polydisk. The ramification points (where some
preimages collide) correspond to those of the projection of the zero locus of
the resultant (which form a hypersurface by Proposition 4.41), and to those
points of the set Σ over which the polynomials Pj,w(z1) have more common
roots than “typically”. This implies the statement of the theorem for the
analytic subset S, modulo the fact that the latter ramification points are
projected to a hypersurface. 2

Definition 4.45 A mapping f : V → W of topological spaces is proper, if
the preimage of every compact subset in W is a compact subset in V .

Theorem 4.46 (Remmert Proper Mapping Theorem) Let f : M →
N be a holomorphic mapping of complex manifolds. Let A ⊂ M be an
analytic subset. Let the restriction f |A be a proper mapping. Then the
image f(A) ⊂ N is an analytic subset.

The proof of this theorem requires very powerful tools of complex anal-
ysis, and we will not discuss it here.

Remark 4.47 The general properties of analytic sets discussed before can
be proved by using Proper Mapping Theorem.
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Corollary 4.48 Let M , R be complex manifolds, and let R be compact.
Then the projection to M of every analytic subset in the product M × R is
an analytic subset in M .

Corollary 4.49 Let P1,w(z1), . . . , Pk,w(z1) be an arbitrary collection of Weier-
strass polynomials that are holomorphic functions on C × ∆r. Then the
intersection of their zero loci is projected onto an analytic subset in ∆r.

5 Introduction to complex algebraic geometry. Chow
Theorem

Definition 5.1 A subset A ⊂ Cn is called affine algebraic, if

A = {P1 = · · · = Pk = 0} Pj are polynomials.

Remark 5.2 If A is an infinite intersection of zero loci of polynomials, then
one can always choose a finite number of polynomials defining A. That is,
the ideal consisting of polynomials vanishing on A has a finite basis (Hilbert’s
theorem).

We will concentrate on algebraic subsets in projective spaces. Let us
recall what is the projective space. The group C∗ acts on Cn+1 \ {0} by
multiplication of vectors by complex numbers. The quotient of this action
is called the projective space CPn. It is just the set of all the complex
lines through the origin in Cn+1. Each point z = (z0, . . . , zn) ∈ Cn+1 \ {0}
represents a point of the projective space denoted (z0 : z1 : · · · : zn). The
latter presentation is called “homogeneous coordinates”, which are uniquely
defined by the point up to common constant factor.

The projective space CPn is a complex manifold equipped with affine
atlas. For every j = 0, . . . , n the corresponding affine chart is the subset
defined by the inequality zj 6= 0. It consists of points with homogeneous
coordinates (z0 : z1 : . . . zj−1 : 1 : zj+1 : · · · : zn) and is naturally biholomor-
phic to Cn equipped with the coordinates (z0, . . . , zj−1, zj+1, . . . , zn). The
above affine charts cover all of CPn, and the transitions between them are
invertible rational mappings on their intersections. For example, the transi-
tion of the chart number 0 with coordinates (z1, . . . , zn) to the chart number
1 with coordinates ζ0, ζ2, . . . , ζn) is defined by the formula

ζ0 =
1

z1
, ζ2 =

z2

z1
, . . . , ζn =

zn
z1
.
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The standard action of the group GLn+1(C) on Cn+1 induces the action of
the group PGLn+1 = GLn+1/C∗ on CPn by projective transformations. Let
π : Cn+1 \ {0} → CPn denote the standard projection.

Let P (z0, . . . , zn) be a homogeneous polynomial. Its zero locus

Γ̃P = {P = 0} ⊂ Cn+1 \ {0}

is C∗-invariant. Its projection image will be denoted

ΓP = π(Γ̃P ) ⊂ CPn.

Definition 5.3 A projective algebraic subset in CPn is an intersection

A = ∩lj=1ΓPs = {P1 = · · · = Pl = 0} ⊂ CPn.

Remark 5.4 The intersection of a projective algebraic subset with an affine
chart, say number j, is an affine algebraic subset there. It is defined as zero
locus of the system of polynomials Ps(z0, z1, . . . , zj−1, 1, zj+1, . . . , zn). Vice
versa, the closure in CPn of each affine algebraic subset in Cn is a projective
algebraic subset.

Remark 5.5 Algebraic sets (both affine and projective) are obviously an-
alytic. For the affine sets the converse is false. For example, the graph
{y = ex} ⊂ C2 is not algebraic, since no polynomial vanishes on it. The
next theorem says that for the projective sets the converse is true.

Theorem 5.6 (Chow) Each analytic subset in CPn is algebraic.

The proof of Chow Theorem will be done first for hypersurfaces, see the
next definition. This part of the proof is self-contained. Afterwards the
proof in the general case will be done by induction in codimension using
Proper Mapping Theorem.

Definition 5.7 A subset A ⊂ M in a complex manifold M is a hypersur-
face, if each point p ∈ A has a neighborhood U = U(p) ⊂M such that there
exists a holomorphic function f : U → C for which A ∩ U = {f = 0}.

Remark 5.8 An analytic subset A of pure codimension one is always a
hypersurface. Indeed, this is a local statement: given a point p ∈ A, we have
to show that the germ (A, p) is given by a zero locus of germ of holomorphic
function. Fix a non-constant germ of holomorphic function that vanishes
on A: it exists by analyticity. Let h1, . . . , hk denote those of its irreducible
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factors that vanish on some open subsets in A. We claim that the product
H =

∏
j hj vanishes exactly on A. It is easy to see that H ≡ 0 on A. Now

it suffices to show that each germ of holomorphic function vanishing on A is
divisible by hj , or equivalently, vanishes on its zero locus. Or equivalently,
vanishes on some open subset of its zero locus (which has connected regular
part). This follows from the fact that some open subset of zero locus of each
hj is contained in A, by construction and since A is of pure codimension
one.

In the proof of Chow Theorem and in what follows we will use the fol-
lowing property of hypersurfaces and notion of intersection index of a hy-
persurface and a one-dimensional submanifold.

Definition 5.9 Let (A, p) be a germ of analytic subset in a complex man-
ifold. The ideal IA of the set A is the ideal in the local ring of germs of
holomorphic functions at p consisting of those ones that vanish on A. Recall
that an ideal in a ring is said to be the principal one, if it is generated by
a single element H: each element of the ideal is divisible by H.

Proposition 5.10 The ideal corresponding to a germ of hypersurface is
principal.

Proof Let (A, p) be a germ of hypersurface: it is zero locus of germ of some
holomorphic function f . Then

f =
l∏

j=1

h
dj
j ,

h1, . . . , hl are distinct irreducible polynomials. Every function g vanishing
on A vanishes on the zero loci of the polynomials hj , which are contained
in A. Hence, g is divisible by the product

H =

l∏
j=1

hj .

Finally, each germ of holomorphic function vanishing on A is divisible by
H. The proposition is proved. 2

Definition 5.11 Let (A, p) be a germ of hypersurface in a complex mani-
fold. Let (Γ, p) be a germ of one-dimensional complex submanifold (that is,
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a regular analytic curve) that is not contained in (A, p). Let H be the germ
of function generating the ideal IA, see the above proposition. The restric-
tion to Γ of the function H is a function in one variable having isolated zero
at p. Its multiplicity as that of the root of the function H|Γ is called the
(local) intersection index of the germs (A, p) and (Γ, p).

Example 5.12 The intersection index of transverse germs of complex sub-
manifolds (regular hypersurface and curve) is always equal to one.

Proposition 5.13 Let A and Γ be as above. The every other germ of one-
dimensional submanifold Γ′ C1-close to Γ intersects A at a finite number of
points close to p, and the sum of their intersection indices is equal to the
intersection index of the germs (A, p) and (Γ, p). In particular, if Γ′ ∩ A ⊂
Areg and the latter intersection is transverse at each its point, then the
number of their intersection points is equal to the above intersection index.

Proof Given a holomorphic function in one variable with isolated zero at
a given point p of a given multiplicity d, every close holomorphic function
(uniformly close on some compact neighborhood of the point p) has d zeros
close to p. This implies the statement of the proposition. 2

Example 5.14 Consider a Weierstrass polynomial Pw(z1) of degree d that
is a product of distinct irreducible ones. Then the intersection index of its
zero locus with the line {w = 0} equals d.

Definition 5.15 The (global) intersection index of a hypersurface with a
connected one-dimensional complex submanifold is the sum of the local in-
tersection indices at all their intersection points.

Remark 5.16 The number of the above intersection points is finite. This
follows from the fact that a non-constant function of one variable holomor-
phic on a neighborhood of a point p cannot have a sequence of zeros accu-
mulating to p. The global intersection index is invariant under continuous
deformations of the one-dimensional complex submanifold, by Proposition
5.13. In particular, if the ambient manifold is CPn, then the intersection
index remains the same if we replace the given hypersurface and subman-
ifold by their images under arbitrary projective transformations for which
the image of the latter is not contained in that of the former.
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5.1 Proof of Chow Theorem for hypersurfaces

First let us recall what is the projection from a point in CPn. Fix a point
p ∈ CPn and a hyperplane CPn−1 ⊂ CPn \ {p}. The projection

πp : CPn \ {p} → CPn−1

sending a point q to the intersection with CPn−1 of the line pq is called the
projection from the point p.

Example 5.17 Let p = (0 : 1 : 0 : · · · : 0) in the homogeneous coordinates,
and let CPn−1 be the hyperplane {z1 = 0}. Consider the affine chart “num-
ber 0”: Cn = {z0 = 1} with the coordinates (z1, . . . , zn). The point p is thus
the intersection point of the z1-axis with the infinite projective hyperplane
{z0 = 0}. The projection from the point p in the above affine coordinates
takes the form πp : (z1, w) 7→ w, w = (z2, . . . , zn).

Let Γ ⊂ CPn be a hypersurface. Fix a point p ∈ CPn \ Γ. Without loss
of generality we consider that p = (0 : 1 : · · · : 0) (applying appropriate
projective transformation). The proof of Chow Theorem consists of the two
following steps.

Step 1. We show that the intersection of the hypersurface Γ with the
above affine chart is the zero locus

Γ ∩ Cn = {Pw(z1) = 0}, Pw(z1) = zd1 +
d∑
j=1

aj(w)zd−j1 ,

where aj(w) are holomorphic functions on Cn that admit a polynomial upper
bound of degree j: there exists a constant C > 0 such that

|aj(w)| < C(|w|j + 1). (5.1)

Step 2. We show that bounds (5.1) imply that aj(w) are polynomials
of degrees at most j, and hence, Pw(z1) is a polynomial of degree d. Thus,
Γ ∩Cn is an affine algebraic set, and the homogenization of the polynomial
Pw(z1) is a homogeneous polynomial vanishing on Γ. In the affine chart, it
vanishes exactly on Γ. It does not vanish identically on the infinite hyper-
plane {z0 = 0}. This easily implies that its zero locus coincides with Γ: each
irreducible component of a germ of its zero locus intersects the affine chart,
the intersection lies in Γ, and hence, Γ contains the component.
Proof of Step 1. Let d denote the intersection index of the hypersurface
Γ and a complex projective line (say, the z1-axis) that is not contained in it.
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For every w ∈ Cn−1 let t1(w), . . . , tl(w)(w) denote the z1-coordinates of
the points of intersection of the hypersurface Γ with the line Lw = C×{w}.
Let dj(w) denote their local intersection index at (tj(w), w): one has

d =
∑
j

dj(w).

Set

Pw(z1) =

l(w)∏
j=1

(z1 − tj(w))dj(w).

It is a polynomial of degree d in z1. Locally this is the product of Weierstrass
polynomials defining Γ in neighborhoods of the points (tj(w), w): generating
the corresponding ideals. Hence, it is holomorphic in (z1, w) ∈ Cn.

Proposition 5.18 For every w ∈ Cn−1 set

α(w) = max{|z1| |(z1, w) ∈ Γ)} > 0.

There exists a constant c > 0 such that

α(w) < c(||w||+ 1) for all w ∈ Cn−1. (5.2)

Proof Suppose the contrary: there exists a sequence of points pk = (tk, wk) ∈
Γ such that

|tk|
||wk||+ 1

→∞, as k →∞; thus, tk →∞. (5.3)

Then pk → p. Indeed, in the homogeneous coordinates

pk = (1 : tk : wk) = (1 : tk : z2k : · · · : znk) = (
1

tk
: 1 :

z2k

tk
: · · · : znk

tk
).

All the latter homogeneous coordinates except for the second (unity) tend
to zero, by (5.3). Hence, pk → p. This together with the closedness of the
set Γ and the inclusion pk ∈ Γ implies that p ∈ Γ. The contradiction thus
obtained proves the proposition. 2

One has

Pw(z1) = zd1 +
d∑
j=1

aj(w)zd−j1 .
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Each aj(w) is a holomorphic function on Cn−1, since Pw(z1) is holomorphic
on Cn. There exists a C > 0 such that inequalities (5.1) hold, by (5.2) and
since aj(w) is a polynomial of degree j in the roots of the polynomial Pw(z1).
Step 1 is proved. 2

Proof of Step 2. The polynomiality of the functions aj(w) follows imme-
diately from their upper bounds (5.1) and the following general proposition.

Proposition 5.19 Let a : Cn → C be a holomorphic function with at most
polynomial growth at infinity: that is, there exist a d ∈ N and a constant
C > 0 such that

|a(z)| < C(||z||d + 1) for all z ∈ Cn. (5.4)

Then a(z) is a polynomial of degree at most d.

Proof Induction in n.
Induction base: n = 1. Then a is an entire function of one variable

having pole of order at most d at infinity. Its Taylor series is its Laurent
series at infinity. Hence, it should not contain powers bigger than d. Thus,
a is a polynomial of degree at most d.

Induction step. Let the statement of the proposition be proved for n = k.
Let us prove it for n = k + 1. Denote z = (z1, w), w = (z2, . . . , zn). For
every fixed w ∈ Cn−1 the function a(z1, w) in one variable z1 is a polynomial
of degree at most d (induction base). Hence,

a(z) =

d∑
j=0

aj(w)zj1.

The functions aj(w) are holomorphic on Cn−1. We claim that they sat-
isfy polynomial bound (5.4) with appropriate C > 0. Indeed, fix arbi-
trary distinct t0, . . . , td ∈ C. There exists a constant C > 0 such that
for every j = 0, . . . , s the function a(tj , w) in w satisfies polynomial bound
(5.4), by assumption. The vector function (a(t0, w), . . . , a(td, w)) is obtained
from (a0(w), . . . , ad(w)) by multiplication by the van der Monde matrix in
(t0, . . . , td), which is non-degenerate and independent on w. The compo-
nents of the former vector function satisfy polynomial bound (5.4), hence so
do the components of the latter. This together with the induction hypothe-
sis applied to the functions aj(w) implies that they are polynomial of degree
at most d. Finally, the function a(w) is a polynomial of degree at most 2d.
It cannot have degree greater than d, by (5.4). This proves the proposition.

2
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Step 2 is proved. The proof of Chow Theorem for hypersurfaces is com-
plete. 2

5.2 Proof of Chow Theorem for arbitrary analytic subset

It suffices to prove Chow Theorem for an irreducible analytic subset Γ ⊂
CPn. The proof will be done by induction in the codimension.

Induction base: codimΓ = 1. Then Γ is a hypersurface, see Remark 5.8,
and it is algebraic by Chow Theorem for hypersurfaces proved above.

Induction step. Let we have proved Chow Theorem for irreducible an-
alytic subsets of codimension at most k. Let us prove it in the case of
codimension k + 1. Thus, let codimΓ = k + 1 ≥ 2.

Fix an arbitrary point q ∈ CPn \Γ. It suffices to show that there exists a
homogeneous polynomial Pq(z0 : · · · : zn) such that Pq|Γ ≡ 0 and Pq(q) 6= 0,
that is, Pq does not vanish on the line represented by q, i.e., does not vanish
on the collection of homogeneous coordinates of the point q. Therefore, Γ is
the intersection of the zero loci of polynomials Pq constructed for all q /∈ Γ.
The ideal of homogeneous polynomials vanishing on Γ has a finite basis, as
every ideal, by Hilbert Basis Theorem. The common zero locus of its basis
coincides with Γ, since the ideal contains all Pq. Hence, Γ is algebraic.

Fix a point β ∈ Γreg. Fix a point p ∈ CPn \ (Γ ∪ {q}) satisfying the
following conditions:

1) the projective line L = pq is disjoint from the set Γ;
2) the line pβ is not contained in the tangent subspace TβΓreg.
Both conditions hold for an open and dense subset of points p ∈ CPn,

and hence, can be both achieved. For the second condition this is obvious.
For the first condition this holds, since codimΓ ≥ 2. In more detail, if L
intersects Γ, it intersects it in a finite number of points, since q /∈ Γ, as in
Remark 5.16. One can achieve by deformation that the intersection points
be regular. Then each regular intersection point can be erased by arbitrarily
small deformation of the line L, since codimΓ ≥ 2.

Consider the projection πp : CPn \ {p} → CPn−1 from the point p. The
image πp(Γ) ⊂ CPn−1 is an analytic subset, by Proper Mapping Theorem.
Its dimension equals dimΓ, since the germ of projection πp : Γ → CPn−1

at β is an immersion, i.e., has non-degenerate differential, by Condition 2).
Therefore, the image πp(Γ) ⊂ CPn−1 has codimension codimΓ − 1. Hence,
πp(Γ) is algebraic, by induction hypothesis. Let us choose the homogeneous
coordinates (z0 : · · · : zn) on CPn so that p = (0 : 1 : 0 : · · · : 0) and
CPn−1 is the coordinate projective (z0 : z2 : · · · : zn)-hyperspace. Then in
the affine chart z0 = 1 with the coordinates (z1, . . . , zn) πp : (z1, w) 7→ w
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is the projection along the z1-axis. Thus, α = πp(q) /∈ πp(Γ) (Condition
1)), and there exists a homogeneous polynomial P (z0 : z2 : · · · : zn) that
vanishes on πp(Γ) and does not vanish on the line representing the point α.
The polynomial P depends only on (z0 : z2 : · · · : zn). and does not depend
on z1. Thus its zero locus is a union of fibers of the projection πp containing
π−1
p (πp(Γ)). Therefore, it vanishes on Γ and does not vanish at the point
q ∈ π−1

p (α). This proves the induction step. Chow Theorem is proved.

6 Biholomorphic automorphisms

In this series of lectures we will study biholomorphic automorphisms of some
classical complex manifolds. First, we show that each automorphism of a
projective space is projective. Then we present some results on automor-
phisms on bounded domains, with the complete classification of automor-
phisms of ball and polydisk. Their proofs are based on the Generalized Max-
imum Principle and Schwarz Lemma for holomorphic mappings of normed
spaces.

6.1 Biholomorphic automorphisms of projective space

Theorem 6.1 The group of biholomorphic automorphisms of projective space
CPn is the group PGLn+1(C) = PSLn+1(C) of projective transformations:
each automorphism is a projective transformation.

For the proof of Theorem 6.1 we introduce the notion of degree of a
hypersurface (one-dimensional submanifold). We show that the intersection
index of a hypersurface and a one-dimensional submanifold is equal to the
product of their degrees. This implies that the images of intersecting line
and hyperplane under a biholomorphism have degree one. Therefore, each
biholomorphism of the projective space sends lines lo lines and hyperplanes
to hyperplanes. This easily implies that it is a projective transformation.

Definition 6.2 The degree of a hypersurface Γ ⊂ CPn is its intersection in-
dex with a line that is not contained in Γ. The degree of a one-dimensional
connected complex submanifold in CPn is its intersection index with a hy-
perplane that does not contains it. (The degrees under question do not
depend on the choice of line (hyperplane), by Remark 5.16.)

Lemma 6.3 The intersection index of a hypersurface and a one-dimensional
connected complex submanifold in CPn that is not contained in it is equal to
the product of their degrees.
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Proof Let Γ,Λ ⊂ CPn be respectively a hypersurface and a one-dimensional
connected submanifold, Λ 6⊂ Γ. Let d1, d2 denote their degrees. The inter-
section index is invariant under projective transformations in the following
sense: for every g1, g2 ∈ PGLn+1(C) such that g2(Λ) 6⊂ g1(Γ) the intersec-
tion index < g1(Γ), g2(Λ) > of the images is equal to the intersection index
< Γ,Λ >, by connectedness of the group PGLn+1(C) and Remark 5.16.
In more detail, given a one-dimensional connected complex manifold Λ and
its image g(Λ) under a projective transformation g, each of them being not
contained in Γ, one can connect g to unity by a path gt in PGLn+1(C),
g0 = Id, g1 = g such that gt(Λ) 6⊂ Γ for all t ∈ [0, 1]. It suffices to take an
arbitrary point p ∈ Λ with p, g(p) /∈ Γ, connect p and g(p) by path pt in
CPn \ Γ and follow it by an arbitrary continuous family of projective trans-
formations gt such that gt(p) = pt, g0 = Id, g1 = g. Let us construct those
transformations g1 and g2 for which the intersection index of the images is
equal to d1d2. To do this, fix a line L 6⊂ Γ that intersects Γ transversally
at its regular points. Fix a projective hyperplane CPn−1 that intersects Λ
transversally and does not contain L; then the latter intersections are finite.
Fix a point p ∈ L \ (Γ ∪ CPn−1) and a hyperplane CPn−2 ⊂ CPn−1 \ Λ.
Consider the homogeneous coordinates (z0 : · · · : zn) on CPn such that

p = (0 : 1 : · · · : 0), CPn−1 = {z1 = 0}, CPn−2 = {z0 = z1 = 0}

and the affine chart Cn = {z0 = 1} equipped with the coordinates z =
(z1, . . . , zn) = (z1, w), w = (z2, . . . , zn), so that the line L be the z1-axis.
Recall that each affine transformation extends to a projective one. For every
0 < λ < 1 consider the affine transformations

g1,λ(z1, w) = (λz1, w); g2,λ(z1, w) = (z1, λw).

Claim. For every λ > 0 small enough one has < g1,λ(Γ), g2,λ(Λ) >=
d1d2.
Proof Fix a polydisk ∆ ⊂ Cn−1 centered at 0 in the w-space such that its
preimage under the projection π1 : (z1, w) 7→ w intersects Γ by a union of d1

graphs of holomorphic functions z1 = z1(w) on ∆, see Fig. 2a): its existence
follows from transversality and finiteness of the intersection L∩Γ. Then the
g1,λ-images of the above graphs tend to the disk {0} ×∆ ⊂ Cn, as λ → 0:
the corresponding functions get multiplied by λ→ 0 and the multiplication
results converge to zero uniformly on compact subsets in ∆, see Fig. 2b).
Similarly, fix a disk D centered at 0 in the z1-axis such that its preimage
under the projection π2 : (z1, w) 7→ z1 intersects Λ by a union of d2 graphs
of holomorphic vector functions w = w(z1) on D. Its existence follows from
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transversality and the assumption that the points of intersection Λ∩CPn−1

are finite points of the affine chart: the infinite hyperplane CPn−2 ⊂ CPn−1

is disjoint from the curve Λ by assumption. Then the g2,λ-images of the
above graphs tend to D × {0}, as λ → 0, as above, see Fig. 2a),b). This
implies that for every λ small enough the intersection index < g1(Γ), g2(Λ) >
equals the intersection index of d1 copies of the polydisk {0} × ∆ and d2

copies of the disk D×{0}. That is, it is equal to d1d2. The claim is proved.
2
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Figure 2: The hypersurface Γ, the curve Λ and their images under the
mappings g1 = g1,λ and g2 = g2,λ respectively with small λ > 0.

The claim immediately implies Lemma 6.3, 2

Corollary 6.4 Each hypersurface of degree one is a hyperplane. Each one-
dimensional submanifold of degree one is a line.

Proof Let a hypersurface Γ ⊂ CPn be not a hyperplane. Then it is not
contained in a hyperplane. Therefore, one can choose a line L 6⊂ Γ that inter-
sects Γ in at least two distinct points. Therefore, Γ has degree at least two.
The case of one-dimensional submanifold is treated analogously by changing
line to a hyperplane that does not contain its connected component. The
corollary is proved. 2

Proof of Theorem 6.1. Every biholomorphic mapping g : CPn → CPn
sends hypersurface and line intersecting transversely to a hypersurface and
a connected one-dimensional submanifold intersecting transversely at one
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point, thus having intersection index one. This together with Lemma 6.3
implies that the degrees of their images are equal to one. Therefore, the
images are respectively a hyperplane and a line, by Corollary 6.4. Thus, g
maps hyperplanes to hyperplanes and lines to lines. Without loss of gener-
ality we consider that it fixes a given hyperplane CPn−1: one can achieve
this by replacing g by its post-composition with a projective transformation.
Consider an affine chart on the complement Cn = CPn \ CPn−1. Without
loss of generality we can consider that g fixes the origin and the points rep-
resented by unit coordinate vectors: one can achieve this again by replacing
g by its post-composition with a projective transformation that is an affine
transformation in the chosen chart.

Claim. A biholomorphic transformation g : CPn → CPn sending hy-
perplanes to hyperplanes and lines to lines, preserving an affine chart Cn
and fixing the origin and unit coordinate vectors in the latter chart is the
identity.
Proof The transformation under question preserves the affine coordinate
axes and fixes three points in each of them: the origin, the unity and the
infinity. Therefore, it is the identity on each coordinate axis. It sends
intersections of hyperplanes to intersections of hyperplanes. Therefore, it
sends projective subspaces of any dimension to projective subspaces of the
same dimension. Hence, it preserves the coordinates 2-planes. On each
coordinate 2-plane E it is identity on both its coordinate axes, and hence,
preserves each line L ⊂ E that is not parallel to the axes: the intersection
points of the line L with the axes are fixed. Hence, g preserves each line in E,
and thus, the intersection point of every two lines is its fixed point. Finally,
g is the identity on E. Analogously g is the identity on every coordinate
subspace in Cn (induction in the dimension). The claim is proved. 2

The initial mapping g is a projective transformation, by construction
and the claim. This proves Theorem 6.1. 2

6.2 Generalized Maximum Principle and Schwarz Lemma

We will be dealing with norms || || on Cn positive on non-zero vectors and
satisfying the following conditions:

||av||+ ||(1− a)v|| ≤ ||v|| for every a ∈ [0, 1]; (6.1)

||λv|| = |λ|||v|| for every λ ∈ C. (6.2)

The unit ball centered at 0 in a given norm || || will be denoted by

B|| || = {||v|| < 1}.
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Condition (6.1) is equivalent to the convexity of the unit ball in the norm
under consideration. Condition (6.2) is equivalent to its invariance under
multiplication by complex numbers with unit module.

Example 6.5 The Euclidean norm and the maximum module norm

||z|| = ||z||E =
√
|z1|2 + · · ·+ |zn|2, ||z||max = max

j
|zj |

satisfy conditions (6.1) and (6.2).

Theorem 6.6 (Generalized Maximum Principle). Let U ⊂ C be a
connected domain, f : U → Cn be a holomorphic mapping. Let || || be a
norm on Cn, and let the function ||f(z)|| achieve its maximal value at some
point P ∈ U . Then ||f(z)|| ≡ const.

In the proof of Theorem 6.6 we use the following general properties of
convex sets and real hyperplanes in Cn.

Theorem 6.7 Let C ⊂ Rn be a convex subset. For every point x ∈ ∂C there
exists a hyperplane through x that does not intersect the interior Int(C). Or
equivalently, the interior of every convex subset is an intersection of half-
spaces.

Proof (sketch: a complete proof will be given as an exercise with
hints in Task 4). It suffices to prove Theorem 6.7 for a bounded convex
set: the intersection CN of the set C with a ball centered at 0 of radius N .
Namely, let HN be hyperplanes through x that do not intersect Int(CN ).
Then we take H to be the limit of a converging subsequence HNk in the
Grassmanian space of hyperplanes (which is compact).

Without loss of generality we consider that C is compact and Int(C) 6= ∅.
First we prove Theorem 6.7 in the case, when C is a polytope: the convex

hull of a finite set. Afterwards we approximate C by polytopes and pass to
the limit. Namely, for every ε > 0 fix a finite ε-net Sε ⊂ C. Let Σε ⊂ C
denote its convex hull, which is a polytope. For every xε → ∂Σε there exists
a hyperplane Hε through xε satisfying the statement of the theorem for the
convex set Σε. Passing to the limit, as ε → 0 and xε → x, we take H to
be the limit of a convergence subsequence Hεk . The hyperplane H passes
through x and does not intersect Int(C). This proves Theorem 6.7. 2

Proposition 6.8 Every real hyperlane H ⊂ Cn (that is, every kernel of
a R-linear functional Cn ' R2n → R) contains a complex subspace HC of
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real codimension one in H. This is the intersection of the hyperplane H
with its image under the multiplication by the imaginary unity i. It is the
unique maximal complex subspace in H: every other complex subspace in H
is contained in HC.

Proof The latter multiplication being anti-involution (i2 = −1), the im-
age of the hyperplane H coincides with its preimage. This implies that the
intersection HC = H ∩ (iH) is invariant under the multiplication by i, and
hence, is a complex subspace: an additive subgroup invariant under multi-
plication by all complex numbers. Its codimension in H equals one. Indeed,
otherwise, H = iH would be a complex subspace in Cn of real codimension
one, which is obviously impossible. Conversely, every complex subspace in
H should be contained in HC, being invariant under the multiplication by
i. The proposition is proved. 2

Proof of Theorem 6.6. In the case, when f(P ) = 0, the statement of
the theorem is obvious. Thus, we consider that f(P ) 6= 0. Fix a hyperplane
H through the image f(P ) that does not intersect the ball B = {||w|| <
||f(P )||}: it exists by Theorem 6.7. Let HC ⊂ H denote the maximal
complex subspace. Let L denote the complex line Cf(P ) generated by the
vector f(P ). The intersection l = L ∩H is a real line in L ' C. Consider
the new affine coordinates (w1, . . . , wm) in the image such that the line L be
the w1-axis, P = 0 and l be the imaginary axis in L in the coordinate w1,
and HC be the coordinate (w2, . . . , wm)-hyperplane. In addition we require
that the ball B lies on the side where Rew1 ≤ 0: one can achieve this by
changing the sing of the coordinate w1, since H ∩B = ∅. Let π1 : Cm → C
denote the projection to the w1-axis. One has Re(π1 ◦ f(z)) ≤ 0 for every
z ∈ U , since f(z) ∈ B ⊂ {Rew1 ≤ 0}. Thus, we have that g(z) = π1 ◦ f(z)
is a holomorphic function on U , g(P ) = 0, and Re(g(z)) ≤ 0. Therefore,
g(z) ≡ 0 (Opennes Principle for holomorphic functions and uniqueness of
analytic extension). Or equivalently, f(z) ∈ HC for every z ∈ U . On the
other hand, ||v|| ≥ ||f(P )|| for every v ∈ H, by the choice of the hyperplane
H. Therefore, ||f(z)|| ≥ ||f(P )|| for every z ∈ U , and at the same time,
||f(P )|| is the maximal value of the function ||f(z)||. Hence, ||f(z)|| ≡ const.
Theorem 6.6 is proved. 2

Lemma 6.9 (Generalized Schwarz Lemma). Let || ||1, || ||2 be norms
on Cn and Cm respectively. Let f : B|| ||1 → B|| ||2 be a holomorphic mapping
such that f(0) = 0. Then ||f(z)||2 ≤ ||z||1.

Proof Fix a complex line L ⊂ Cn through the origin. Its intersection with
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the unit ball B|| ||1 is a disk D ⊂ L centered at zero. Let t be a linear
complex coordinate on L in which D be the unit disk. Thus, the restriction
to L of the norm || ||1 coincides with the function |t|. Consider the restriction
of the mapping f to D as a holomorphic vector function in t. The function
g(t) = f(t)

t is holomorphic on the unit disk D, since f(0) = 0. There are two
possible cases.

Case 1): ||g(t)||2 ≤ 1 for every t ∈ D. This is equivalent to the inequality
of the lemma for the restriction of the function f to D.

Case 2): ||g(t)||2 > 1 at some point t. The upper limit of the func-
tion ||g(t)||2, as |t| → 1, is no greater than one, since ||f ||2 ≤ 1 on D,
by assumption. Therefore, it takes its maximum greater than one at some
point t0 ∈ D. Hence, ||g(t)|| ≡ r > 1 on D, by Theorem 6.6. That is,

||f(t)||2 ≡ r|t|, r > 1, and ||f(r−
1
2 )||2 = r

1
2 > 1. This contradicts the con-

dition of the lemma, which implies that ||f ||2 takes values less than one on
the disk D. Hence, this case is impossible. Lemma 6.9 is proved. 2

6.3 Cauchy inequality. Henri Cartan’s theorem on automor-
phisms tangent to identity

Definition 6.10 A complex manifold is called a domain of bounded type, if
it is biholomorphic to a bounded domain in Cn.

Here we prove the following theorem

Theorem 6.11 (Henri Cartan). Let B be a domain of bounded type,
O ∈ B, f : B → B be a biholomorphic automorphism such that f(O) = O
and df(O) = Id. Then f = Id.

In the proof of Cartan’s Theorem we use Cauchy inequality, which follows
immediately from Cauchy Integral Formula.

Theorem 6.12 (Cauchy Inequality). Let f : ∆r → C be a holomorphic
function on a polydisk of multiradius r = (r1, . . . , rn), and let |f | ≤ R on
∆r. Let m ∈ (Z ≥ 0)n, and let cm be the Taylor coefficient of the function
f at 0 corresponding to the monomial zm. Then

|cm| ≤
R

rm
. (6.3)

Proof Without loss of generality we consider that f is holomorphic on the
closed polydisk ∆r, replacing r by λr, 0 < λ < 1 and passing to the limit,
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as λ→ 1. One has

cm = (
1

2πi
)n
∮
|ζ1|=r1

. . .

∮
|ζn|=rn

f(ζ)

ζmζ1 . . . ζn
dζn . . . dζ1. (6.4)

Indeed, in the Laurent series of the function f(z)
zmz1...zn

each monomial different
from cm

z1...zn
contains at least one coordinate zj in a power different from −1.

Hence, its integral over the product of boundaries ∂Drj vanishes, since the
residue in the coordinate zj vanishes. This implies that in the integral in
the right-hand side of the formula (6.4) the only nontrivial contribution is
given by the monomial cm

ζ1...ζn
, and the integral of the latter equals (2πi)ncm.

This proves (6.4). The restriction to the product of the boundaries ∂Drj

of the subintegral expression in (6.4) has module no greater than R
rmr1...rn

.
This together with (6.4) implies (6.3). 2

Proof of Theorem 6.11. Without loss of generality we consider that
B ⊂ Cn is a bounded domain, O is the origin and B contains the polydisk
∆ = ∆(1,1,...,1). Let R denote the minimal radius of the ball centered at the
origin that contains B. For every m ∈ (Z≥0)n let cm denote the coefficient
at zm in the Taylor series at 0 of the mapping f . Suppose the contrary:
f 6= Id, that is, the Taylor series of the mapping f contains some nonlinear
terms. Set

d = min{|m| = |m1|+ · · ·+ |mn| | m ∈ (Z≥0)n, cm 6= 0, |m| ≥ 2},

Pd(z) =
∑
|m|=d

cmz
m.

The polynomial Pd(z) is homogeneous nonzero of degree d. Consider the
iterations fk = f ◦ f ◦ · · · ◦ f . For every k ∈ N one has

fk(z) = z + kPd(z) +O(|z|d+1) :

taking k-th iterate of a mapping tangent to the identity (i.e., fixing 0 and
having identity derivative there) multiplies lower nonlinear terms by k. This
follows immediately from the fact that the Taylor series of the composition of
mappings is the formal composition of their Taylor series and straightforward
calculation. Therefore, for every m with |m| = d and cm 6= 0 for every
k ∈ N the coefficient at zm of the k-th iterate fk equals kcm. Thus, it
becomes arbitrarily large, as k is large enough. On the other hand, the
latter coefficients kcm should be no greater than R for all k, by Theorem
6.12 and since all the iterates fk are holomorphic on ∆ and take values in
the ball of radius R centered at the origin. The contradiction thus obtained
proves Theorem 6.11. 2
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6.4 Automorphisms of the ball and the polydisk

Here we will describe completely the above-mentioned automorphisms and
prove the following theorem.

Theorem 6.13 The ball and the polydisk are not biholomorphically equiv-
alent.

In the proof of Theorem 6.13 and in what follows we use the following
simple observation.

Remark 6.14 The group Aut(D1) of conformal transformations of the unit
disk acts transitively on it. The product (Aut(D1))n acts transitively on the
polydisk ∆ = ∆(1,...,1).

Proof of Theorem 6.13. Suppose the contrary: there exists a biholomor-
phism Φ : B → ∆ of the unit ball B ⊂ Cn onto the polydisk ∆. Without loss
of generality we can and will consider that Φ(0) = 0: one can achieve this by
replacing Φ by its post-composition with a transformation from the group
(Aut(D1))n, by transitivity, see the above remark. Thus, Φ is a biholomor-
phism of unit balls in the Euclidean norm || ||E in the source and max-norm
in the image that maps zero to zero. Therefore, ||Φ(z)||max ≡ ||z||E , by
Schwarz Lemma. Thus, for every 0 < r < 1 a C∞ diffeomorphism Φ sends
the Euclidean sphere Sr of radius r onto the sphere Σr of radius r in the
max-norm. Therefore, the sphere Σr is a C∞-smooth submanifold, as is Sr.
But this is false. Indeed, suppose that Σr is smooth (that is, regular) at
the point w = (r, . . . , r). Note that for every j = 1, . . . , n the sphere Σr

contains the product D1 × · · · ×D1 × r ×D1 . . . D1, where r stands at the
j-th position. Therefore, for every j the tangent space TwΣr contains the
sum of complex lines parallel to all the coordinate axes except for the j-th.
Hence, TwΣr = TwCn, which is obviously impossible, if Σr is a submanifold
of real codimension one, as is Sr. The contradiction thus obtained proves
the theorem. 2

Theorem 6.15 The group of automorphisms of the unit polydisk ∆ = ∆(1,...,1) ⊂
Cn is generated by the product (Aut(D1))n and the symmetric group Sn
acting by permutations of coordinate components: each automorphism is a
composition of an element of the above product and a permutation.

Proof It suffices to prove the statement of the theorem for every automor-
phism g ∈ Aut(∆) fixing the origin: each automorphism of the polydisk can
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be corrected to fix the origin by replacing it by its post-composition with
an element of the group (Aut(D1))n, see Remark 6.14.

Proposition 6.16 Let g ∈ Aut(∆) fix 0. Then g is the composition of
a permutation of coordinates and their multiplications by complex numbers
with unit modules.

Proof For every j = 1, . . . , n let Vj ⊂ ∆ denote the subset of those points
z = (z1, . . . , zn) for which |zj | > |zs| for every s 6= j. The union ∪nj=1Vj is
an open and dense subset in ∆. One has ||z||max ≡ |zj | on Vj , by definition.
Let k ∈ {1, . . . , n} be an index such that Vk ∩ g(Vj) 6= ∅, or equivalently,
Ujk = Vj ∩ g−1(Vk) 6= ∅. One has ||g(z)||max ≡ ||z||max, by Schwarz Lemma.
Therefore, |zk(g(z))| ≡ |zj | on Ujk. Thus, the ratio of two holomorphic
functions zj and zk ◦ g on the open set Ujk is holomorphic and has module
identically equal to one. Therefore the latter ratio is locally constant, by
Opennes Principle for holomorphic functions. Thus, there exists a θ ∈ R
such that zk ◦ g ≡ eiθzj on an open subset in ∆, and hence, on all of ∆, by
uniqueness of analytic extension. Finally, for every j = 1, . . . , n there exist
a k = k(j) and a θj ∈ R such that zk(j) ◦ g ≡ eiθjzj . One has k(j1) 6= k(j2)
whenever j1 6= j2, since g is invertible. Thus, the mapping j 7→ k(j) is a
permutation. This proves the proposition. 2

The proposition immediately implies the statement of Theorem 6.15. 2

The next theorem describes the automorphisms of the unit ball B. To
state it, let us consider the subgroup U(1, n) ⊂ GLn+1(C) acting naturally
on the space Cn+1 with the coordinates z̃ = (z̃0, . . . , z̃n) that preserves the
indefinite Hermitian form

Q(z̃) = |z̃0|2 −
n∑
j=1

|z̃j |2.

Let PU(1, n) denote its projectivization: its image under the natural pro-
jection GLn+1(C)→ PGLn+1(C) of factorization by C∗. Set

K = {Q > 0} ⊂ Cn+1, Σ = {v ∈ Cn+1 | Q(v) = 1} ⊂ K.

The images of the sets K and Σ under the tautological projection Cn+1 \
{0} → CPn coincide with the Euclidean unit ball B in the affine chart
Cn = {(1 : z1 : · · · : zn)}. The group U(1, n) preserves both K and Σ.
Therefore, each element of the group PU(1, n) yields an automorphism of
the unit ball.
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Theorem 6.17 The group of automorphisms of the unit ball B ⊂ Cn coin-
cides with the group PU(1, n): each its biholomorphism is the restriction to
B of an element of the group PU(1, n).

The starting point of the proof of Theorem 6.17 is the following imme-
diate corollary of Schwarz Lemma and Cartan’s Theorem.

Lemma 6.18 Every automorphism of the unit ball in Cn that fixes the ori-
gin is a unitary transformation.

Proof Each automorphism f(z) of the unit ball fixing the origin preserves
the standard Euclidean norm: ||f(z)|| ≡ ||z||, by Schwarz Lemma applied to
f and to its inverse. Therefore, its differential df(0) is a unitary operator.
Without loss of generality we can and will consider that df(0) = Id: one
can achieve this by taking a composition with appropriate unitary trans-
formation. Then f = Id, by Cartan’s Theorem. This proves the lemma.

2

Remark 6.19 The group U(n) of unitary transformations of the affine
chart Cn embeds naturally into PU(1, n). This follows from the fact that
it lifts to the subgroup in GLn+1(C) fixing the z̃0-axis and acting as the
unitary group U(n) on the coordinates (z̃1, . . . , z̃n).

Lemma 6.20 The group PU(1, n) acts transitively on the unit ball.

Proof It suffices to show that U(1, n) acts transitively on the unit sphere
Σ in the pseudo-hermitian metric Q. That is, given two vectors u, v ∈ Cn+1

with Q(u) = Q(v) = 1, let us show that there exists a transformation
g ∈ U(1, n) such that g(u) = v. Consider the orthogonal complements u⊥

and v⊥ with respect to the indefinite Hermitian form Q. One has u /∈ u⊥,
v /∈ v⊥, since Q(u) = Q(v) = 1 6= 0. The restriction to u⊥ of the form Q is
negative definite. Indeed, each indefinite Hermitian form has a well-defined
signature: the number of positive squares minus the number of negative
squares in a basis where its matrix is diagonal. The signature is independent
on the choice of diagonalizing basis. The signature of the form Q is equal
to 1 − n. Its restriction to u⊥ can be diagonalized: reduced to a sum of
squared moduli of coordinates with signs. Then the signature of the form
Q is equal to the signature of its restriction to u⊥ plus one (corresponding
to the vector u, where Q(u) = 1 > 0). This implies that the latter signature
of restriction to u⊥ equals −n, and thus, the latter restriction is negative
definite. Finally, the restrictions of the form Q to both u⊥ and v⊥ are
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negative definite, and hence, can be transformed one into the other by a
complex linear transformation h : u⊥ → v⊥. The transformation g sending
u to v and coinciding with h on u⊥ is a linear automorphism preserving the
form Q, by construction, and hence, g ∈ U(1, n). The lemma is proved. 2

The two latter lemmas immediately imply Theorem 6.17.

6.5 Introduction to complex dynamics: linearization theo-
rem in dimension one

Here and in the next subsection we give an introduction to local complex
dynamics given by a germ of biholomorphic transformation at a fixed point.
We prove linearization theorems in one and two dimensions for contracting
germs. Then we show that the attractive basin of an attracting non-resonant
fixed point of an injective mapping C2 → C2 is naturally biholomorphically
equivalent to C2. This yields a wide class of domains in C2 that are smaller
than C2 but biholomorphically equivalent to C2. This phenomena does not
occur in one dimension, by Riemann Mapping Theorem.

Theorem 6.21 Every germ of conformal mapping

f : (C, 0)→ (C, 0), f(z) = λz +O(z2), 0 < |λ| < 1.

is conformally conjugated to its linear part. More precisely, there exists a
unique germ h : (C, 0)→ (C, 0), h(0) = 0, h′(0) = 1, such that

λh = h ◦ f. (6.5)

In the proof of Theorem 6.21 and its two-dimensional analogue we use
the following classical theorem.

Theorem 6.22 (Weierstrass). Let a family of functions holomorphic on a
domain D ⊂ Cn converge uniformly on compact subsets in D. Then their
limit is holomorphic.

Proof The theorem in one variable is classical. Let us consider the case of
higher dimensions. Let us consider a converging family as above. Then the
limit is a continuous function. On the other hand, it is separately holomor-
phic, by the theorem in one variable. Hence, it is holomorphic, by Osgood’s
Lemma. 2

Proof of Theorem 6.21. Equation (6.5) is equivalent to the statement
that h is a fixed point of the transformation

L : h 7→ λ−1h ◦ f.
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We will show that L is a contraction in appropriate metric space and hence,
has a unique fixed point there.

Fix a µ > 0 such that

0 < µ2 < |λ| < µ < 1. (6.6)

Fix an r > 0 such that f is holomorphic on Dr and

µ2|z| ≤ |f(z)| ≤ µ|z| whenever z ∈ Dr. (6.7)

In particular, (6.7) implies that f(Dr) ⊂ Dr.
For every function q(z) holomorphic on Dr and continuous on Dr such

that q(0) = q′(0) = 0 set

||q|| := sup
|z|≤r

|q(z)|
|z|2

.

Let M denote the space of functions h holomorphic on Dr and continuous
on Dr such that

h(0) = 0, h′(0) = 1,

equipped with the distance dist(h1, h2) = ||h1−h2||. This is a complete met-
ric space. Indeed, a sequence fundamental in the norm converges uniformly,
by definition. Hence, its limit is holomorphic, by Weierstrass Theorem 6.22
and vanishes at 0. The derivatives also converge uniformly in compact set
to the derivative of the limit, by Cauchy integral formula for the derivative
and convergence of the function. Therefore, the limit has unit derivative at
0. Finally, the limit of a converging sequence is an element of the space M ,
and hence, M is complete.

Proposition 6.23 L(M) ⊂M .

Proof If h(0) = 0, then (Lh)(0) = 0 and (Lh)′(0) = h′(0). If h is holomor-
phic on Dr and continuous on Dr, then so is the composition h ◦ f , since f
is holomorphic on Dr and f(Dr) ⊂ Dr. This implies that L preserves the
space M and proves the proposition. 2

Proposition 6.24 ||Lh1 − Lh2|| ≤ ν||h1 − h2||, ν = |λ|−1µ2 < 1.

Proof The operator L being linear, it suffices to show that ||Lq|| ≤ ν||q||
for every q as above. One has

|(Lq)(z)|
|z2|

= |λ|−1 |q(f(z))|
|f(z)|2

|f(z)|2

|z|2
≤ |λ|−1||q||µ2,
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by definition, (6.7) and since f(z) ∈ Dr whenever z ∈ Dr. This implies
that the norm of the image Lq is no greater than ν||q||. The proposition is
proved. 2

The two latter propositions together imply that L : M →M is a contrac-
tion. Hence, L has a unique fixed point h ∈M , which obviously represents a
conjugating germ we are looking for. Its uniqueness follows from the above
uniqueness of fixed point and the fact that the above argument holds for
every r small enough. This proves Theorem 6.21. 2

6.6 Linearization theorem in dimension two

Here we prove a linearization theorem for a germ F = (f1, f2) : (C2, 0) →
(C2, 0) of biholomorphic mapping at 0 with linear part of the type

dF (0) = Λ =

(
λ1 0
0 λ2

)
, 0 < |λ1|, |λ2| < 1.

Definition 6.25 A matrix Λ as above (or a vector λ = (λ1, λ2)) is said to
be resonant, if it satisfies a relation of type

λj = λm = λm1
1 λm2

2 , m = (m1,m2) ∈ Z2
≥0, m1 +m2 ≥ 2,

which is called a resonance relation. If there are no resonance relations, then
Λ is called non-resonant.

Remark 6.26 If 0 < |λ1|, |λ2| < 1, then each resonance relation (if any)
takes the form λ1 = λk2, k ∈ N (up to permutation of indices), since in this
case |λm| < |λj |, whenever m1 +m2 ≥ 2 and mj > 0.

Theorem 6.27 Every germ F as above with non-resonant linear part is
biholomorphically conjugated to its linear part. More precisely, there exists
a unique biholomorphic germ H : (C2, 0) → (C2, 0), H(0) = 0, dH(0) = Id
such that

ΛH = H ◦ F. (6.8)

The proof of Theorem 6.27 is analogous to the above proof of Theorem
6.21. Equation (6.8) is equivalent to the statement that H is a fixed point
of the linear operator

L : H 7→ Λ−1H ◦ F.

First we replace F by its conjugate whose lower nonlinear terms have high
enough degree. Then we will show that L is a contraction in appropriate
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complete metric space, which will imply the existence and uniqueness of
fixed point.

Proposition 6.28 For every N ∈ N there exists a biholomorphic germ HN :
(C2, 0)→ (C2, 0) of vector polynomial with components of degree at most N
with H(0) = 0, dH(0) = Id such that

HN ◦ F ◦H−1
N (z) = Λz +O(|z|N ). (6.9)

Proof Induction in N .
Induction base: N = 2, HN = Id.
Induction step. Let the statement of the proposition be proved for N =

k. Let us prove it for N = k+1. Let Hk be the germ given by the induction
hypothesis for N = k. Then

Fk(z) = Hk ◦ F ◦H−1
k (z) = Λz + Pk(z) +O(|z|k+1),

Pk(z) =

( ∑k
s=0 asz

s
1z
k−s
2∑k

s=0 bsz
s
1z
k−s
2

)
. (6.10)

We show that there exists a germ of vector polynomial

hk(z) = z +Qk(z), Qk(z) =

( ∑k
s=0 αsz

s
1z
k−s
2∑k

s=0 βsz
s
1z
k−s
2

)
such that

hk ◦ Fk ◦ h−1
k (z) = Λz +O(|z|k+1). (6.11)

Then Hk+1 = hkHk satisfies (6.9) with N = k + 1. This will prove the
induction step and the proposition.

Homological equation on the coefficients of the vector polyno-
mial Qk.

One has

hk ◦ Fk ◦ h−1
k (z) = Λz + Pk(z) +Qk(Λz)− ΛQk(z) +O(|z|k+1).

Therefore, equation (6.11) is equivalent to the equation

Pk(z) +Qk(Λz)− ΛQk(z) = 0, (6.12)

which is called the homological equation. The coefficient at zs1z
k−s
2 of the

first (second) component in its left-hand side equals respectively

as + αs(λ
s
1λ

k−s
2 − λ1) = 0,
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bs + βs(λ
s
1λ

k−s
2 − λ2) = 0.

Note that the above expressions in the brackets (the multipliers at αs and
βs) are non-zero by non-resonance condition. Therefore, the latter equa-
tions in αs and βs can be solved, and the vector polynomial Qk constructed
from their solutions αs, βs satisfies (6.12), by construction. This proves the
proposition. 2

Proof of Theorem 6.27. Without loss of generality we consider that
|λ1| ≤ |λ2|. Fix a µ > 0 such that

0 < |λ1| ≤ |λ2| < µ < 1. (6.13)

Let us choose a N ∈ N large enough so that

|λ1|−1µN < 1. (6.14)

Without loss of generality we consider that

F (z) = Λz +O(|z|N ).

One can achieve this by conjugation from the above proposition. We will be
looking for a linearizing conjugation of the type H(z) = z+O(|z|N ). Fix an
r > 0, such that F is holomorphic on the closed Euclidean ball Br of radius
r and

|F (z)| ≤ µ|z| whenever z ∈ Br. (6.15)

Here the norm is Euclidean. Let M denote the space of holomorphic map-
pings H : Br → C2 continuous on Br such that H(0) = 0, H(z) =
z + O(|z|N ). For every holomorphic mapping Q : Br → C2 continuous
on Br with

Q(z) = O(|z|N ) as z → 0

set

||Q|| = sup
z∈Br

|Q(z)|
|z|N

.

The space M equipped with the distance d(H1, H2) = ||H1 − H2|| is a
complete metric space. The operator

L : H 7→ Λ−1H ◦ F

is a well-defined transformation of the space M to itself, since F (Br) ⊂ Br,
as in the previous subsection. Set

ν = |λ1|−1µN < 1.
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Claim. One has ||LQ|| ≤ ν||Q|| for every Q as above.
Proof One has

|Λ−1Q ◦ F (z)|
|z|N

≤ |λ1|−1 |Q ◦ F (z)|
|F (z)|N

(
|F (z)|
|z|

)N ≤ λ−1
1 µN ||Q|| = ν||Q||,

as in the previous subsection. This implies the claim. 2

The claim implies that L : M →M is a contraction, and hence, it has a
unique fixed point. This finishes the proof of Theorem 6.27, as at the end
of the previous subsection. 2

6.7 Polynomial automorphisms of C2. Fatou–Bieberbach do-
mains

Here we study polynomial automorphisms of C2 having an attractive fixed
point of non-resonant type. We show that its basin of attraction is biholo-
morphic to C2. In the case, when the basin is not all of C2 (e.g., if there is
another fixed point), it yields an example of domain in C2 different from C2

but biholomorphic to C2: the so-called Fatou-Bieberbach domain. This phe-
nomena is specific to higher dimensions and does not occur in dimension one:
every simply connected domain in C different from all of C is conformally
equivalent to the unit disk, not to C (Riemann Mapping Theorem).

Example 6.29 Here are some examples of biholomorphic automorphisms
of C2:

1) The group of affine transformations generated by the group GL2(C)
and the group C2 of translations.

2) Elementary polynomial automorphisms of higher degrees:

Ψ :

(
z1

z2

)
7→
(

z1 + P (z2)
z2

)
.

3) Transcendental transformations, e.g., (z1, z2) 7→ (z1 + ez2 , z2).

Theorem 6.30 (Jung, 1942).1 All the polynomial automorphisms, i.e.,
biholomorphisms of C2 given by vector polynomials form a group generated
by affine and elementary polynomial automorphisms, see the above classes
1) and 2).

1A beautiful geometric and relatively simple proof of Jung Theorem was obtained by
a French mathematician Stéphane Lamy: Lamy, S. Une prevue géométrique du théorème
de Jung. – Enseignement Mathématique, 48 (2002), 291–315.
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We will not present a proof of Jung Theorem, since it requires additional
techniques not covered by the cours.

Theorem 6.31 Let F : C2 → C2 be an injective holomorphic mapping that
has a fixed point at the origin. Let its linear part Λ = dF (0) be diagonal
non-resonant with nonzero eigenvalues lying in the unit disk. Consider the
attractive basin

V = {z ∈ C2 | F k(z)→ 0, as k → +∞}.

Then the local linearizing germ H : (C2, 0) → (C2, 0) from Theorem 6.27
conjugating F to Λ (i.e., satisfying (6.8)) extends up to a biholomorphic
isomorphism H : V ' C2.

Proof There exists a ball B centered at the origin such that H is well-
defined and holomorphic on B and F (B) ⊂ B (see the proof of Theorem
6.27). Set

B0 = B, B1 = F−1(B0), B2 = F−1(B1), . . .

One has
B0 ⊂ B1 ⊂ · · · = V,

since by definition, each point of the basin V is eventually sent to B by some
iteration of the mapping F . We show that H extends holomorphically to
every Bk by induction in k.

The induction base is obvious: H is holomorphic on B0.
Induction step. Let we have already shown that H is holomorphic on

Bk and satisfies (6.8) on Bk:

H = Λ−1H ◦ F. (6.16)

Let us prove that it extends holomorphically to Bk+1 and satisfies (6.16)
there. The latter composition Λ−1H ◦F is well-defined and holomorphic on
Bk+1, since F (Bk+1) ⊂ Bk, H is holomorphic on Bk (induction hypothe-
sis) and Λ is invertible. It coincides with H on Bk (induction hypothesis:
equality (6.16) on Bk). Therefore, it yields a holomorphic extension of the
mapping H to Bk+1, and equation (6.16) holds on Bk+1 by construction.
The induction step is over. Theorem 6.31 is proved. 2

Corollary 6.32 Let F : C2 → C2 be an injective holomorphic mapping
(e.g., biholomorphic) that has a fixed point p whose linear part is diagonal
non-resonant and has all the eigenvalues nonzero and lying in the unit disk.
Then its attractive basin is biholomorphic to C2.
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Definition 6.33 A Fatou–Bieberbach domain is a domain in Cn different
from Cn that is biholomorphically equivalent to Cn. (These domains exist
only for n ≥ 2.)

Remark 6.34 In the case, when, e.g., F has an additional fixed point q 6=
p, the attractive basin is different from all of C2, and hence, is a Fatou–
Bieberbach domain.

Let us construct a polynomial automorphism with an attractive basin
being a Fatou–Bieberbach domain. Take polynomial automorphisms

f : (z1, z2) 7→ (z1 + z2, z2); g : (z1, z2) 7→ (z1, z2 + z2
1).

Let us choose a non-resonant diagonal matrix

Λ = diag(λ1, λ2), λ1 6= λ2, 0 < |λ1|, |λ2| < 1.

Set

F (z) = Λg ◦ f(z) =

(
λ1(z1 + z2)

λ2(z2 + (z1 + z2)2)

)
.

Proposition 6.35 The attractive basin V of the fixed point 0 of the auto-
morphism F is biholomorphically equivalent to C2. The automorphism F
has an additional fixed point q 6= 0, hence V 6= C2 is a Fatou–Bieberbach
domain.

Proof The differential dF (0) has distinct eigenvalues λ1, λ2, and hence,
is conjugated to the diagonal matrix. Therefore, F is linearizable on V
(Theorems 6.27 and 6.31). The system of equations on fixed points has the
form {

z1 = λ1(z1 + z2)

z2 = λ2(z2 + (z1 + z2)2)
(6.17)

The first equation of the system is equivalent to each one of the two following
equations:

z1 =
λ1z2

1− λ1
, z1 + z2 = z2(1 +

λ1

1− λ1
) =

z2

1− λ1
.

Substituting the latter expression for z1 +z2 to the second equation in (6.17)
and dividing it by z2 yields

1 +
z2

(1− λ1)2
= λ−1

2 .
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This yield a solution

z2 = (1− λ1)2(λ−1
2 − 1), z1 =

λ1z2

1− λ1
=
λ1

λ2
(1− λ1)(1− λ2)

of system (6.17), and hence, an additional fixed point of the mapping F .
The proposition is proved. 2

7 Domains of holomorphy. Holomorphic convex-
ity. Pseudoconvexity. Riemann domains.

Here we introduce the notion of domain of holomorphy: a domain that
admits a holomorphic function “everywhere non-extendable” through the
boundary. We prove Oka’s Theorem, which says that being domain of holo-
morphy is equivalent to holomorphic convexity. Then we study local ver-
sions of convexity: pseudo-convexity, Levi convexity,... which appear to be
equivalent to the global holomorphic convexity.

In the present section for every r > 0 the polydisk centered at z0 with
multiradius (r, . . . , r) will be denoted by

∆(z0, r) = ∆r,...,r(z0) = (Dr(z0))n.

7.1 Domains of holomorphy and holomorphic convexity. Oka’s
Theorem

Let D ⊂ Cn. For every z0 ∈ D set

r(z0) = max{r > 0 | ∆(z0, r) ⊂ D}

Definition 7.1 A domain D ⊂ Cn is called a domain of holomorphy, if
there exists a holomorphic function f : D → C such that for every z0 ∈ D
the function f |∆(z0,r(z0)) cannot be extended holomorphically to a bigger
polydisk ∆(z0, R), R > r(z0).

Example 7.2 The unit disk D1 ⊂ C is a domain of holomorphy. For exam-
ple, the modular function f : D1 → C (providing the universal covering over
C \ {0, 1,∞} and obtained by reflecting ideal hyperbolic triangles) does not
extend in the above sense, since it takes values arbitrarily close to 0, 1, ∞
in a neighborhood of every point of the boundary. Similarly, every simply
connected domain V ⊂ C is a domain of holomorphy with respect to the
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composition of a conformal isomorphism V ' D1 and the modular function
D1 → C. Moreover, one can show that every domain in C is a domain of
holomorphy.

Everywhere below for a domain D ⊂ Cn by H(D) we denote the space
of holomorphic functions on D.

The following definition generalizes the notion of convexity.

Definition 7.3 Let D ⊂ Cn be a domain, K ⊂ D be a subset. Fix a class
of functions F ⊂ H(D). Let us define the F -convex hull

K̂F = {z ∈ D | |f(z)| ≤ sup
x∈K
|f(x)| for every f ∈ F}.

The subset K is called F -convex, if K̂F = KF (then it is automatically
closed). The domain D is called F -convex, if the F -hull K̂ of every compact
subset K b D is compact. In the case, when F = H(D) we call the above
F -convex objects holomorphically convex and denote K̂ = K̂H(D).

Remark 7.4 Recall that the convex hull of a subset K ⊂ Rn is an inter-
section of half-spaces, each of them being bounded by a hyperplane through
some point of the set K. Therefore, the convex hull can be defined as the set
of those points x ∈ Rn such that for every linear functional l on Rn one has
l(x) ≤ supy∈K l(y). In the case, when K ⊂ Cn, each half-space is defined
by the inequality Re l < c, where l is a C-linear functional on Cn, as in the
proof of Theorem 6.6. Or equivalently, by inequality |fl| < ec, fl(z) = el(z).
This implies that the convex hull of the set K coincides with its F -hull in
Cn with respect to the class F consisting of the exponents of the C-linear
functionals.

Example 7.5 A ball centered at the origin is F -convex for F being the
collection of C-linear functionals.

Remark 7.6 Let D ⊂ Cn, F1 ⊂ F2 ⊂ H(D). Then every F1-convex subset
K ⊂ D is always F2- and H(D)-convex. One has K̂F1 ⊃ K̂F2 ⊃ K̂ ⊃ K.
Similarly, if D is F1-convex, then it is F2-and H(D)-convex.

Remark 7.7 The H(D)-hull of a bounded subset K is bounded, since the
modules of the coordinate functions cannot achieve values on K̂ greater than
their suprema on K.

One of the main results in the theory is the following theorem.
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Theorem 7.8 (Oka). A domain D ⊂ Cn is a domain of holomorphy, if
and only if it is holomorphically convex.

Corollary 7.9 The notion of domain of holomorphy is invariant under bi-
holomorphisms, as is the notion of holomorphic convexity.

First we prove Oka’s Theorem. Afterwards we show that convergence
domains of power series are always holomorphically convex and characterize
them.

The first step for Oka’s Theorem is the next theorem.

Theorem 7.10 Let a domain D be holomorphically convex. Then it is a
domain of holomorphy.

Proof In the proof of Theorem 7.10 we use the following proposition.

Proposition 7.11 Let D ⊂ Cn be an F - convex domain. Then it admits a
compact F -convex exhaustion

K1 b K2 b · · · = D, K̂j = Kj .

Proof Consider an arbitrary compact exhaustion B1 b B2 b B3 b · · · =
D. Set

j1 = 1, K1 = B̂1,F = (̂B1)F , j2 = min{j | Bj c K1}, K2 = B̂j2,F , . . . .

The sets K1 b K2 b . . . form a compact F -convex exhaustion of the domain
D. The proposition is proved. 2

Fix an H(D)-convex exhaustion K1 b K2 b . . . and a sequence of
points wj ∈ Kj+1 \Kj accumulating to the boundary ∂D so that each open
set intersecting the boundary ∂D contains a limit point of the sequence
wj : one can construct the latter sequence wj , since Kj form a compact
exhaustion of the domain D. We will construct a function f ∈ H(D) such
that f(wj) → ∞, as j → ∞. This will imply that f is non-extendable to
polydisks ∆(z0, R), z0 ∈ D, R > r(z0): the latter polydisk intersects the
boundary, and hence, contains a limit point of the sequence wj ; thus, f
cannot extend holomorphically there. To do this, we construct functions
fj ∈ H(D), set

Fk =

k∑
j=1

fj ,
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with the following properties:

|fj ||Kj < 2−j , |Fj(wj)| > 2j . (7.1)

and prove the above statements for the function

f =
+∞∑
j=1

fj .

We construct the functions fj inductively, taking f0 = 0 as the induction
base. Let we have already constructed fj for j ≤ l − 1. Let us construct
fl. The compact Kl is holomorphically convex, and wl ∈ Kl+1 \ Kl. This
implies that there exists a holomorphic function g : D → C such that

g(wl) = 1, |g||Kl < δ < 1.

Set
fl = (

g√
δ

)N ,

where N is chosen large enough so that

δ
N
2 < 2−l, |fl(wl)| = δ−

N
2 > 2l + |Fl−1(wl)|.

The first inequality implies that |fl||Kl < 2−l. The second one implies that

|Fl(wl)| ≥ |fl(wl)| − |Fl−1(wl)| > 2l.

The induction step is over. The functions fj satisfying (7.1) are constructed.
The first inequality in (7.1) together with Weierstrass Theorem imply that
the series f =

∑+∞
j=1 fj converges uniformly on compact subsets in D, and

the limit f is holomorphic on D. For every l ∈ N one has

Fl(wl) > 2l, fj(wl) < 2−j for every j ≥ l + 1.

The first inequality follows from (7.1). The second one follows from the first
inequality in (7.1) and the inclusion wl ∈ Kl+1. Therefore

|f(wl)| ≥ |Fl(wl)| −
∑
j≥l+1

|fj(wl)| ≥ 2l−1, f(wl)→∞, as l→∞.

This proves the theorem. 2
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Theorem 7.12 Let D ⊂ Cn be a domain of holomorphy. Then it is holo-
morphically convex.

For the proof of Theorem 7.12 we use the following notation and theorem.
For every subset K ⊂ D set

ρ(K, ∂D) = inf{r(z0) | z0 ∈ K}.

Theorem 7.13 (Cartan–Thullen). Let D ⊂ Cn, K b D be a compact
subset, σ = ρ(K, ∂D). Then for every z0 ∈ K̂ every function f ∈ H(D)
extends holomorphically from z0 to the polydisk ∆(z0, σ).

Proof To show that the function f is holomorphic on ∆(z0, σ), we show
that its Taylor series converges uniformly on compact subsets in ∆(z0, σ).
To do this, we estimate its Taylor coefficients at z0 and by using Cauchy
Inequality. Fix a 0 < δ < σ and a function f ∈ H(D). For every point
z0 ∈ D and every k ∈ Zn≥0 let ck(z0) denote the Taylor coefficient at (z−z0)k

of the function f at z0. One has

|∂
|k|

∂zk
f(z0)| ≤ sup

K
|∂
|k|

∂zk
f |,

since z0 ∈ K̂ and by the H(D)-convex hull inequality applied to the above
partial derivative instead of the function f . This implies that

|ck(z0)| ≤ sup
t∈K
|ck(t)|, (7.2)

since the Taylor coefficients are equal to the corresponding derivatives di-
vided by the factorials of the components of the vector k. For every t ∈ K
one has r(t) ≥ σ > δ, by definition. Therefore, Kδ = ∪t∈K∆(t, δ) ⊂ D is a
compact subset. Set M = supKδ |f |. One has

|ck(t)| ≤
M

δ|k|
for every t ∈ K,

by Cauchy Inequality. Hence, ck(z0) ≤ M
δ|k|

, by (7.2). Now fix an arbitrary

0 < µ < δ. The series
∑
|ck(z0)|µ|k| converges. Indeed, its terms are no

greater than Mν|k|, ν = µ
δ < 1. The series

∑
k ν
|k| = ( 1

1−ν )n converges. This
together with the previous majoration implies that the series

∑
ck(z0)(z −

z0)k converges uniformly on the polydisk ∆(z0, µ), where µ can be taken
arbitrarily close to δ. On the other hand δ can be taken arbitrarily close to
σ. Finally, the latter series, which is the Taylor series of the function f at
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z0 converges uniformly on compact subsets in the polydisk ∆(z0, σ). Hence,
f extends holomorphically there. The theorem is proved. 2

Proof of Theorem 7.12. Let D be a domain of holomorphy of a function
f . Let K b D be an arbitrary compact set, σ = ρ(K, ∂D). For every z0 ∈ K̂
the function f extends holomorphically to ∆(z0, σ), by Theorem 7.13. This
implies that σ ≤ r(z0), by the definition of domain of holomorphy. Or
equivalently,

r(z0) ≥ ρ(K, ∂D) for every z0 ∈ K̂. (7.3)

Finally, the gap between the subset K̂ ⊂ D and ∂D is bounded from below
by ρ(K, ∂D), and K̂ is bounded, see Remark 7.7. Hence, K̂ is compact.
Theorem 7.12 is proved. 2

Proof of Theorem 7.8. Theorem 7.8 follows immediately from Theorems
7.10 and 7.12. 2

Corollary 7.14 Let D ⊂ Cn be a domain of holomorphy (or equivalently,
holomorphically convex). Then for every compact subset K b D one has

ρ(K̂, ∂D) = ρ(K, ∂D).

Proof The corollary follows immediately from inequality (7.3) and the
obvious inequality ρ(K̂, ∂D) ≤ ρ(K, ∂D), which follows from the inclusion
K ⊂ K̂. 2

7.2 Characterization of domains of convergence of power se-
ries

Fix affine coordinates on Cn centered at 0. Consider the action on Cn of
the n-torus Tn = (S1)n, S1 = R/2πZ, centered at 0:

θ = (θ1, . . . , θn) : z 7→ (eiθ1z1, . . . , e
iθnzn).

Similarly we define the Tn-action centered at arbitrary point p ∈ Cn: the
action is defined in the same way but in the affine coordinates with the
origin shifted to p:

z 7→ (p1 + eiθ1(z1 − p1), . . . , pn + eiθn(zn − pn)).

We will consider the logarithmic mapping

λ : (C∗)n → Rn, z 7→ (ln |z1|, . . . , ln |zn|).
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Definition 7.15 A Reinhardt domain in Cn centered at a point p ∈ Cn is
a domain invariant under the Tn-action centered at p. A Reinhardt domain
centered at p is complete, if it is a union of polydisks centered at p.

Definition 7.16 A Tn-invariant subset D ⊂ Cn is logarithmically convex,
if the image λ(D ∩ (C∗)n) ⊂ Rn is convex.

Example 7.17 Every polydisk in Cn centered at the origin is logarith-
mically convex. Its image under the mapping λ is a negative quadrant
{x1 < a1, . . . , xn < an}, a1, . . . , an ∈ R. A Reinhardt domain is complete, if
and only if its λ-image is a union of negative quadrants.

Example 7.18 For every power series
∑

k ckz
k its convergence domain is

a complete logarithmically convex Reinhardt domain, by Corollary 2.4 and
an exercise in Task 1. The next theorem provides the converse statement.

Theorem 7.19 A domain D ⊂ Cn is the convergence domain of some
power series

∑
k ckz

k, if and only if it is a complete logarithmically con-
vex Reinhardt domain.

For the proof of the theorem we have to prove that each logarithmically
convex complete Reinhardt domain is a convergence domain. To do this, we
first prove that every holomorphically convex complete Reinhardt domain
is a convergence domain. Then we show that each logarithmically convex
complete Reinhards domain is holomorphically convex. This will prove the
theorem.

Proposition 7.20 Let D ⊂ Cn be a holomorphically convex complete Rein-
hardt domain. Then it is the convergence domain for some power series∑

k ckz
k.

Proof The domain D under consideration is a domain of holomorphy, by
Theorem 7.10. Therefore, there exists a holomorphic function f : D →
C that does not extend holomorphically beyond the boundary ∂D. This
implies that its Taylor series at 0 converges on every polydisk ∆r ⊂ D,
and does not converge on any bigger polydisk centered at 0. Hence, it
converges on D, which is the union of the latter polydisks ∆r, and thus, D
is contained in its convergence domain. The convergence domain is a union
of polydisks, and all of them are contained in D, by the above statement of
non-convergence in bigger polydisks. Therefore, the domains under question
coincide. The proposition is proved. 2
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Lemma 7.21 Every logarithmically convex complete Reinhardt domain is
holomorphically convex.

Proof For the proof of the lemma we consider the completed real line
R̂ = R∪{−∞}. The mapping λ is thus extended continuously as a mapping
λ : Cn → (R̂)n.

Let D be a logarithmically convex complete Reinhardt domain. Let
K b D be a compact subset containing a polydisk ∆σ centered at the
origin. Set

K̂log = λ−1(conv(λ(K)) :

this is the logarithmically convex hull of the set K. It is logarithmically
convex, by definition. Note that the subset λ(K) ⊂ (R̂)n is compact, as is
K, since the mapping λ is continuous. Therefore, its convex hull is closed.
It is also a bounded subset in (R̂)n. That is, the coordinate functions xj on

(R̂)n are bounded from above on conv(λK), being bounded from above on
λ(K), as are |zj | = exj◦λ. Therefore, the logarithmic hull K̂log ⊂ Cn is a

bounded closed, hence compact subset. One has K̂log ⊂ D: K ⊂ D, hence
λ(K) ⊂ λ(D) and conv(λK) ⊂ λ(D), since λ(D) is convex by definition.
Set

M = {zk | k = (k1, . . . , kn) ∈ Zn≥0} : this is the class of all the monomials.

Proposition 7.22 Every logarithmically convex compact subset in Cn con-
taining a polydisk centered at the origin is M-convex.

Proof Let K b D be a logarithmically compact subset containing a poly-
disk centered at the origin. Fix an arbitrary w ∈ Cn \K. It suffices to show
that there exists a k ∈ (Z≥0)n such that

|zk(w)| > sup
K
|zk|. (7.4)

One has λ(w) /∈ λ(K). The set λ(K) is convex, compact and contains a neg-
ative quadrant {x1 ≤ c1, . . . , xn ≤ cn}. Therefore, there exists a hyperplane
L through λ(w) disjoint from λ(K), and thus, it does not intersect the latter
quadrant. Let N denote the unit normal vector to L that is directed to the
side separated from the latter quadrant by L. The vector N = (N1, . . . ,Nn)
has all the components non-negative, by the latter direction condition. One
has

∑
j Njxj(λ(w)) > maxx∈λ(K)(N, x), by definition. Or equivalently,

|zN |(w) > max
K
|zN |, |zN | =

n∏
j=1

|zj |Nj . (7.5)
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Let ε > 0 denote difference of the left-hand side and right-hand side of
the latter inequality. We can approximate the positive components of the
vector N by rationals: if the approximation is good enough, then the same
inequality remains valid. Moreover we can chose the approximants having
the same denominator q: qN ∈ (Z≥0)n. Thus, without loss of generality we
consider that k = qN ∈ (Z≥0)n. Then inequality (7.5) holds by construction:
taking q-th powers of the sides of inequality (7.5) keeps the inequality valid.
This proves the proposition. 2

The logarithmic hull K̂log is M-convex, by the proposition. Hence, it is
H(D)-convex, since M⊂ H(D). This proves the lemma. 2

Proof of Theorem 7.19. Each convergence domain of power series is a
complete logarithmically convex Reinhardt domain (Corollary 2.4 and an
exercise in Task 1). The converse follows from Proposition 7.20 and Lemma
7.21. Theorem 7.19 is proved. 2

7.3 Continuity Principle. Levi convexity

Definition 7.23 A domain D ⊂ Cn is not holomorphically extendable at a
point ζ ∈ ∂D, if there exist a neighborhood U = U(ζ) ⊂ Cn and a holomor-
phic function f : U ∩D → C that does not extend holomorphically to ζ. We
say that D is holomorphically non-extendable, if it is not holomorphically
extendable at each point of its boundary.

Remark 7.24 A domain of holomorphy is obviously holomorphically non-
extendable. The converse statement was a problem stated by Levy and
solved by Oka.

Theorem 7.25 (Oka). A domain in Cn is a domain of holomorphy, if and
only if it is holomorphically non-extendable.

Example 7.26 Consider the Hartogs’ figure H: the union of two subsets
A,B,⊂ C2,

A = {r < |z1| < R} ×DR, B = DR × V, V ⊂ DR is an open subset.

It is holomorphically extendable at the points of the product DR×∂V . The
reason is that for every point w0 ∈ ∂V , set r < σ < R, the closed disk
S = Dσ × {w0}, which not contained in H, has the following properties:

- its boundary is contained in H;

71



- it is the limit of the family of disks Sw = Dσ × {w}, w ∈ V , contained
in H.

The two latter statements together imply that the Cauchy integrals along
their boundaries extend every holomorphic function to the limit disk S.

The next theorem states that presence of limiting embedded “disks” satis-
fying the two latter statements is basically the only reason for holomorphic
extendability of a domain to its boundary point. To state it, let us introduce
the following notions.

Definition 7.27 Let n > r ≥ 1. Let W ⊂ Cr be a domain with compact
closure, φ : W → Cn be an injective holomorphic mapping, whose differential
has maximal rank r at each point. The image

S = φ(W )

is called a compact holomorphic surface.

Recall that for every subset K ⊂ Cn and each r > 0 we set

Kδ = ∪t∈K∆(t, δ).

Definition 7.28 A sequence of subsets Mk ⊂ Cn converges to a subset
M ⊂ Cn, if for every ε > 0 there exists a N > 0 such that for every k > N
one has

Mk ⊂M ε and M ⊂M ε
k .

Remark 7.29 The limit set is always closed.

Theorem 7.30 (Benke–Sommer Continuity Principle). Let D ⊂ Cn,
Sk ⊂ D be a sequence of compact holomorphic surfaces converging to a subset
S ⊂ Cn whose boundaries ∂Sk converge to a subset Γ b D. Then every
holomorphic function f : D → C extends holomorphically to a neighborhood
of the limit set S.

Proof Let us choose an auxiliary open subset G, Γ b G b D: the closure
G is a compact subset in D and Γ is a compact subset in G. Set

r = ρ(G, ∂D).

There exists a N > 1 such that for every k > N one has ∂Sk ⊂ G. Therefore,
for those k every holomorphic function f : D → C satisfies the inequality

sup
Sk

|f(z)| = sup
∂Sk

|f(z)| ≤ sup
G
|f(z)|.
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The first equality follows from the Maximum Principle applied to the restric-
tion of the function f to the surface Sk. The latter inequality implies that
Sk ⊂ Ĝ = ĜH(D) for every k > N . Therefore, for those k f extends holo-
morphically to the neighborhood Srk (Cartan–Thullen Theorem 7.13.) For

every k large enough one has S ⊂ S
r
2
k , hence S

r
2 ⊂ Srk, by convergence. This

implies that f extends holomorphically to S
r
2 . This proves the theorem. 2

Remark 7.31 One can show (slightly modifying the above proof) that f
extends holomorphically to Sρ, ρ = ρ(Γ, ∂D).

As an application of the Continuity Principle, let us prove the following
lemma on erasing real singularities of holomorphic functions in two complex
variables.

Lemma 7.32 (Exercise from Task 1). Let D ⊂ C2 be a domain inter-
secting R2. Each holomorphic function f : D \R2 → C extends holomorphi-
cally to all of D.

Proof It suffices to treat the case, when D = ∆δ,δ = ∆(0, δ), and prove
that each holomorphic function f : D \ R2 extends holomorphically to the
origin. To do this, consider the family of parabolas

St = {w = i(z2 + t)} ∩ {|z| ≤ δ

4
}, 0 ≤ t ≤ δ

4
, S := S0.

The sets St are one-dimensional compact surfaces.
Claim. One has St ∩ R2 = ∅ for t > 0; S0 ∩ R2 = {0}.

Proof Let (z, w) ∈ St ∩ R2. Then z2 + t ≥ 0, hence w ∈ R ∩ iR = {0},
w = 0 = z2 + t. The latter equality holds only for z = t = 0. This proves
the claim. 2

The surfaces St with t > 0 are contained in D \ R2 and converge to
the surface S = S0 passing through 0 ∈ ∂(D \ R2) with boundaries, and
∂S ⊂ D \ R2. Therefore, each holomorphic function on D \ R2 extends
holomorphically to a neighborhood of the surface S, and hence, to the origin
(Continuity Principle). This proves the lemma. 2

Remark 7.33 One can prove the lemma by extending the functions to S
as Cauchy integrals along the surfaces St, without using the Continuity
Principle. That is consider the new coordinates (z, w̃), w̃ = w − iz2, in
which the parabolas St are discs S̃t = {w̃ = it}. Then the Cauchy formula
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for a function f written via integrating along the boundaries ∂St depends
holomorphically on w̃ and defines a holomorphic extension of the function
f to S̃0.

Exercise. Prove higher-dimensional analogue of Lemma 7.32.

Definition 7.34 Let D ⊂ Cn be a domain, ζ ∈ ∂D. We say that D is
Levy- (or L-) convex at ζ, if for every compact holomorphic surface S ⊂ Cn
through ζ with ∂S ⊂ D for every sequence Sk of compact holomorphic
surfaces converging to S with ∂Sk → ∂S one has Sk \ D 6= ∅, whenever k
is large enough. A domain D is called L-convex, if it is L-convex at each
ζ ∈ ∂D.

Proposition 7.35 Let a domain D ⊂ Cn be not holomorphically extendable
at a point ζ ∈ ∂D. Then it is L-convex at ζ.

Proof Suppose the contrary: D is not L-convex at a ζ ∈ ∂D. Then there
exist a compact holomorphic surface S ⊂ Cn, ζ ∈ S, ∂S ⊂ D and a se-
quence Sk → S of compact holomorphic surfaces Sk ⊂ D converging to S
with boundaries. Then each holomorphic function on D extends holomor-
phically to a neighborhood of the limit surface S, and hence, to ζ (Continuity
Principle). Thus, D is holomorphically extendable to ζ. The contradiction
thus obtained proves the proposition. 2

The next theorem provides a global converse statement.

Theorem 7.36 (Oka). A domain D ⊂ Cn is holomorphically non-extendable
(at all the points of its boundary), if and only if it is L-convex.

Theorem 7.37 (Sufficient condition for L-convexity). Let D ⊂ Cn be
a domain, ζ ∈ ∂D. Let there exist a neighborhood U = U(ζ) ⊂ Cn and a
function f holomorphic on U such that

f(ζ) = 0, f |D∩U 6≡ 0.

Then D is not holomorphically extendable (and hence, it is L-convex) at ζ.

Proof The function f−1 = 1
f is holomorphic on U ∩D, f−1(ζ) =∞. This

implies that the function f−1(w) does not extend holomorphically to ζ, by
definition. Therefore, D is not holomorphically extendable to ζ, and hence,
it is L-convex there. The theorem is proved. 2

74



7.4 Levi form. Necessary and sufficient Levi convexity con-
ditions for domains with C2-smooth boundary

Here we consider a domain D ⊂ Cn and a point ζ ∈ ∂D where the boundary
is C2-smooth. That is, there exist a neighborhood U = U(ζ) ⊂ Cn and a
C2-function φ : U → R such that

D ∩ U = {φ < 0}, dφ(ζ) 6= 0. (7.6)

We give necessary and sufficient conditions for L-convexity of the domain
D at ζ in terms of the Hessian of the function φ: positive (non-negative)
definiteness of an appropriate Hermitian form associated to φ and called the
Levi form. To define it, let us recall that the differential of every complex-
valued function g on a domain U ⊂ Cn is a sum of its C-linear part and its
C-antilinear part:

dg = ∂g+∂̄g; ∂g(z) : TzCn → C is C− linear; ∂̄g(z) : TzCn → C is C− antilinear,

∂g =

n∑
j=1

∂g

∂zj
dzj , ∂̄g =

n∑
j=1

∂̄g

∂z̄j
dzj ,

(∂̄g(z))(v) = (∂g(z))(v) for every v ∈ TzCn, whenever g is real-valued.
(7.7)

The latter statement follows from the general fact that the sum of a C-
linear and a C-antilinear functionals is real-valued, if and only if they are
complex-conjugated.

Given a C2-function φ : U → R and a ζ ∈ U , we define a Hermitian
form L̃(v1, v̄2) on TζCn as follows. For given v1, v2 ∈ TζCn let us take two
arbitrary germs at ζ of holomorphic vector fields u1(z), u2(z) such that
uj(ζ) = vj . Set

g(z) = (∂φ(z))(u1(z)), ψ(z) = (∂̄g(z))(u2(z)), L̃(v1, v2) = ψ(ζ). (7.8)

Proposition 7.38 The value L̃(v1, v̄2) is well-defined: it depends only on
v1, v2 ∈ TζCn and does not depend on the choice of vector fields uj. It is

given by an Hermitian form L̃ on TζCn. In local holomorphic coordinates
(z1, . . . , zn) centered at ζ the latter Hermitian form is

L̃ =

n∑
j,s=1

∂2φ

∂z̄s∂zj
(ζ)dzjdzs : (7.9)
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L̃(v1, v̄2) =
n∑

j,s=1

∂2φ

∂z̄s∂zj
(ζ)v1,j v̄2,s, (7.10)

where vj = (vj,1 . . . , vj,n).

Proof It suffices to prove the coordinate presentation (7.9): the well-
definedness then follows immediately. One has

g(z) =

n∑
j=1

∂φ

∂zj
(z)uj(z).

Taking ∂̄-differential of the latter right-hand side results in differentiating
only the partial derivatives of the function φ: ∂̄uj = 0, since uj are holo-
morphic. This implies that ψ(z) = (∂̄g(z))(u2(z)) equals the value of the
Hermitian form (7.9) on the pair of vector fields (u1(z), u2(z)). Taking the
value ψ(ζ) = L̃(v1, v2) yields (7.10). The proposition is proved. 2

Let D, U , ζ, φ be the same, as in (7.6). Set

H = Tζ∂D = Ker(dφ(ζ)).

Claim. Consider the maximal complex subspace HC ⊂ H, see Proposi-
tion 6.8. One has

HC = K = Ker(∂φ(ζ)) = Ker(

n∑
j=1

∂φ(ζ)

∂zj
dzj).

Proof The latter kernel K is a complex vector subspace of complex codi-
mension one in TζCn, being the kernel of a C-linear functional. The differen-
tial dφ(ζ) vanishes on K, being the sum of the functional ∂φ(ζ) (annulating
K) and its complex conjugate, see (7.7). Therefore, HC ⊂ H. This together
with the latter codimension statement and Proposition 6.8 implies that HC
is the maximal complex subspace in H. The claim is proved. 2

Definition 7.39 The Hermitian form L̃ on TζCn from Proposition 7.38, see
(7.9) is called the extended Levi form. Its restriction

L = L̃|HC

is called the Levi form.

In what follows we will use the invariance of the (extended) Levi form
under holomorphic mappings.
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Proposition 7.40 The extended Levi form associated to a function φ is
invariant under holomorphic mappings. That is, let W ⊂ Cr, h : W → D ⊂
Cn be a holomorphic mapping, φ : D → R be a C2-function. Let L̃φ and

L̃φ◦h be respectively the extended Levi forms associated to the functions φ
and φ ◦ h. Then for every z ∈W and vectors v1, v2 ∈ TzCn one has

L̃φ◦h(v1, v2) = L̃φ((dh(z))(v1), (dh(z))(v2)). (7.11)

Proof Consider the invariant definition (7.8) of the extended Levi form
L̃φ◦h at ζ ∈ W with uj being holomorphic vector fields on a neighborhood
of ζ, uj(ζ) = vj . One has

g(z) = (∂φ(h(z)))(dh(z)u1(z)), ψ(z) = (∂̄g(z))(u2(z)).

The function g(z) is a linear combination of partial derivatives of the func-
tion φ with coefficients being holomorphic functions: the components of the
holomorphic vector function (dh(z))u1(z). Taking its ∂̄-derivative along the
field u2(z) results in differentiating the derivatives of the function φ only
and subsequent multiplying them by the components of the vector func-
tion (dh(z))u2(z), by holomorphicity. This implies (7.11) and proves the
proposition. 2

Theorem 7.41 (Levi–Krzoska). Let D, U , ζ, φ be the same, as in (7.6).
Let HC ⊂ H = TζCn be the maximal complex subspace. Let L be the above-
defined Levi form on HC.

1) Let L be positive definite. Then D is holomorphically non-extendable
at ζ.

2) Let D be L-convex at ζ. Then L is non-negatively definite.

The proof of the theorem will be based on the following proposition.

Proposition 7.42 Let φ be a germ of real-valued C2-function on a neigh-
borhood of the origin in Cn. Let dφ(0) 6= 0. Let L̃ denote the correspond-
ing extended Levi form on T0Cn. Then in appropriate local coordinates
z = (z1, . . . , zn) centered at 0 the function φ takes the form

φ(z) = Re z1 + L̃(z, z̄) + o(|z|2), as z → 0. (7.12)

Here we take the value of the extended Levi form on the Euler vector field
z = (z1, . . . , zn).
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Proof Set H = Ker(dφ(0)). Let HC ⊂ H denote the maximal complex
subspace. First take preliminary local coordinates z so that HC coincides
with the (z2, . . . , zn)-subspace: dz1|HC ≡ 0. The differential dφ(0) being a
non-zero R-valued R-linear functional vanishing on HC, it takes the form
adz1 +adz1. We can and will consider that dφ(0) = Re dz1: one can achieve
this by changing z1 to 2az1. Then φ takes the form

φ(z) = Re z1 + L̃(z, z̄) +Q(z, z) +Q(z, z) + o(|z|2).

Here Q is a C-bilinear quadratic form, which we evaluate on the Euler field
z = (z1, . . . , zn):

Q(z, z) =

n∑
j,s=1

qjszjzs.

We kill the Q-terms by the local coordinate transformation

z1 = z̃1 − 2Q(z, z), z 7→ z̃ = (z̃1, z2, . . . , zn).

In the new coordinates one has

φ(z) = Re z̃1 − 2 Re(Q(z, z)) +Q(z, z) +Q(z, z) + L̃(z, z̄) + o(|z|2).

The Q-terms obviously cancel out, and φ takes the form (7.12). The propo-
sition is proved. 2

Proof of Theorem 7.41. Let us prove Statement 1). Let L > 0. Consider
the local coordinates z centered at ζ, z(ζ) = 0 satisfying (7.12).

Claim. There exists a neighborhood U = U(ζ) ⊂ Cn such that z1 6= 0
on D ∩ U .
Proof Set w = (z2, . . . , zn). We have to show that the intersection of the
domain D with the coordinate w-subspace HC does not accumulate to 0 = ζ.
Or equivalently, φ|HC ≥ 0 on a neighborhood of the origin in HC. One has

φ|HC = L(w, w̄) + o(|w|2), (7.13)

by (7.12). This together with positive definiteness of the Levi form L on
HC implies non-negativity of the latter right-hand side on a neighborhood
of the origin in HC. The claim is proved. 2

The function z1 vanishes at ζ ∈ ∂D and does not vanish on D∩U . This
together with Theorem 7.37 implies holomorphic non-extendability of the
domain D at ζ. Statement 1) is proved.
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Let us now prove Statement 2). Suppose the contrary: L(v, v̄) = −c < 0
for some v ∈ HC. Let us show that D is not L-convex. Without loss of
generality we consider that v = (0, 1, 0, . . . , 0) (applying a linear change of
coordinates w = (z2, . . . , zn), which does not change (7.12)). For a small
δ > 0 set

S = {|z2| ≤ δ, z1 = z3 = . . . , zn = 0}.
We show that ∂S ⊂ D and the compact holomorphic curve S is the limit of
a family of compact holomorphic curves Sk on which φ < 0, hence Sk ⊂ D.
This will imply that D is not L-convex.

For every δ small enough one has φ|S ≤ 0 and φ|∂S < 0, by (7.13), as in
the above proof of Statement 1). Hence, ∂S ⊂ D. For every k ∈ N set

Sk = S − (
1

k
, 0, . . . , 0) : the curve S shifted by the vector (−1

k
, 0, . . . , 0).

One has

φ|Sk = −1

k
− c|z2|2 + o(

|z2|
k

) + o(|z2|2) + o(
1

k2
), c > 0,

by definition and (7.12). The sum of two first terms is negative and its
module dominates the remaining terms. Therefore, φ|Sk < 0, hence Sk ⊂ D.
This together with the previous discussion proves Statement 2) and the
Theorem. 2

7.5 Subharmonic functions and L-convexity

Levi–Krzoska Theorem gives a sufficient condition for L-convexity of a do-
main with C2-smooth boundary: strict positivity of the Levi form. Here
we show that a domain is automatically L-convex (and hence, a domain of
holomorphy), if it is a sublevel set of a function from a specific class: the
plurisubharmonic functions. The corresponding Levi forms are nonnegative
definite but not necessarily strictly positive definite. The plurisubharmonic
functions are natural generalizations of the subharmonic functions in one
complex variable. They have important applications. For example, the
proof of one of the most fundamental theorems of geometry, the Poincaré–
Köbe Uniformization Theorem, is based on use of subharmonic functions.

Definition 7.43 A C2-function φ : V → R on a domain V ⊂ C is harmonic
(subharmonic), if for every z0 ∈ V and every r > 0 such that Dr(z0) ⊂ V
one has

φ(z0) =
1

2π

∫ 2π

0
φ(z0 + reiθ)dθ, (7.14)
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respectively,

φ(z0) ≤ 1

2π

∫ 2π

0
φ(z0 + reiθ)dθ. (7.15)

Recall that the Laplacian of a function in one complex variable is ex-
pressed in terms of ∂ and ∂ operators as follows:

∆ = 4
∂2

∂z∂z̄
.

Proposition 7.44 A C2-function of one complex variable is harmonic, if
and only if it satisfies the Laplace equation ∆φ = 0, or equivalently,

∂2

∂z∂z̄
φ = 0.

A C2-function of one complex variable is subharmonic, if and only if its
Laplacian is nonnegative:

∂2

∂z∂z̄
φ ≥ 0. (7.16)

A C2-function on a domain V ⊂ C is (sub)harmonic, if and only if for every
point z0 ∈ V there exists an r0 > 0 such that equality (7.14) (inequality
(7.15)) holds for every 0 < r < r0.

Proof The first statement of the proposition is a classical theorem of anal-
ysis. Let us prove the second one, on the subharmonic functions.

Step 1): subharmonicity implies non-negativity of the Laplacian. Fix an

arbitrary z0 ∈ V , and let us prove that ∂2

∂z∂z̄φ(z0) ≥ 0. Let us choose the
affine coordinate z centered at z0 and write Taylor expansion of the function
φ at z0 = 0:

φ(z) = φ(0)+az+az+cz2+cz2+dzz̄+o(|z|2), a, c ∈ C, d =
∂2

∂z∂z̄
φ(0) ∈ R.

It suffices to show that d ≥ 0. The non-negative difference of the right- and
left-hand sides in inequality (7.15) is equal to the integral

1

2π

∫ 2π

0
(ψ(z) + dzz̄ + o(|z|2))dθ, z = eiθ, ψ(z) = 2 Re(az + cz2).

The integral of the function ψ(z) vanishes, since ψ is a linear combination
of the exponents e±iθ, e±2iθ. The integral of the function dzz̄ equals dr2,
and it dominates the integral of the third one. Therefore, if d < 0, then the
total integral is negative, – a contradiction. Hence, d ≥ 0.
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Step 2): non-negativity of the Laplacian implies subharmonicity. Let
∂2

∂z∂z̄φ ≥ 0. Let us prove inequality (7.15) at a given point z0. We choose
affine coordinate z centered at z0, thus we consider that z0 = 0. Set

g(r) =
1

2π

∫ 2π

0
φ(reiθ)dθ, Dr(z0) ⊂ V

Claim. The function g(r) is non-decreasing.
Proof One has

∂g

∂r
=

1

2π

∫ 2π

0
(
∂φ

∂z
eiθ +

∂φ

∂z̄
e−iθ)dθ =

1

2πi

∮
|z|=r

(
∂φ

∂z
dz − ∂φ

∂z̄
dz)

= − 1

πi

∫
|z|<r

∂2

∂z∂z̄
φdz ∧ dz =

2

π

∫
|z|<r

∂2

∂z∂z̄
φdx ∧ dy ≥ 0.

This proves the claim. 2

One has g(0) = φ(0), hence g(r) ≥ φ(0). This proves inequality (7.15)
and the second step.

Note that in the proof of Step 1) we have used only the existence of an
r0 = r0(z0) > 0 such that inequality (7.15) holds for all 0 < r < r0. There-
fore, under the latter condition the Laplacian of the function φ is everywhere
nonnegative. This together with Step 2) implies the third statement of the
proposition and finishes its proof. 2

Remark 7.45 The general definition of subharmonic function does not re-
quire even continuity: only upper semicontinuity and inequality (7.15) are
required. They are defined as functions with values in R̂ = R ∪ {−∞}. For
example, the function ln |z| is harmonic on C∗ = C \ {0} and subharmonic
on C: the mean inequality (7.15) holds at the origin, where the function
equals minus infinity. This is a continuous R̂-valued function. The series

+∞∑
k=1

1

k3
ln |z − 1

k
|

defines a subharmonic function on C that is discontinuous at the origin.

Remark 7.46 The motivation of the term “subharmonic” is the following.
Consider the Dirichlet problem to find a harmonic function f on a domain
V ⊂ C that is continuous on its closure and satisfies the boundary condition
f |V = ψ, where ψ : ∂V → R is a given continuous function. Let now φ
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be a subharmonic function on V that satisfies the same boundary condition
φ|V = ψ. Then φ ≤ f on V . Vice versa, take an arbitrary continuous
function φ on a domain W ⊂ C. Take an arbitrary disk D = Dr(z0) ⊂ W
and the harmonic extension f : D → R of the restriction φ|∂D. Let for every
D as above one have φ ≤ f in D. Then φ is subharmonic.

Theorem 7.47 (Maximum Principle for subharmonic functions).
Let V ⊂ C be a bounded domain, φ : V → R be a subharmonic function
continuous on V . Then

max
V

φ = max
∂V

φ.

If φ achieves its maximum at an interior point z0 ∈ V , then it is constant.

The theorem follows immediately from inequality (7.15).

Definition 7.48 Let D ⊂ Cn be a domain. A C2 function φ : D → R is
pluri(sub)harmonic, if for every complex line Λ ⊂ Cn the restriction to Λ∩D
of the function φ is (sub)harmonic.

Proposition 7.49 A C2-function φ : D → R is pluriharmonic, if and
only if the corresponding extended Levi form L̃ vanishes identically. A C2-
function φ : D → R is plurisubharmonic, if and only if its extended Levi
form L̃ is non-negative definite at each point in D.

Proof Let Λ ⊂ Cn be an arbitrary complex line. Consider a system of affine
coordinates (z1, . . . , zn) such that L is the z1-axis. Let ζ ∈ Λ, vζ = ∂

∂z1
∈ TζΛ

denote the unit vector directing the z1-axis. One has

∂2φ

∂z1∂z̄1
(ζ) = L̃(vζ , v̄ζ),

by definition. Therefore, the latter derivative is zero (non-negative) for all
Λ and ζ ∈ Λ ∩D, if and only if the extended Levi form vanishes identically
(respectively, non-negative definite) at each point in D. The proposition is
proved. 2

Corollary 7.50 The notion of pluri(sub)harmonicity is invariant under
holomorphic mappings. Namely, the composition φ◦h of a pluri(sub)harmonic
function φ with a holomorphic mapping h is pluri(sub)harmonic.

The corollary follows from Propositions 7.49 and 7.40.
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Corollary 7.51 The restriction of a pluri(sub)harmonic function to a com-
pact holomorphic surface is pluri(sub)harmonic.

Remark 7.52 In fact, the notion of plurisubharmonic function is more gen-
eral than in the above definition: it includes discontinuous functions. The
general definition requires only upper semicontinuity on the definition do-
main and subharmonicity of restrictions to complex lines.

Theorem 7.53 (Maximum Principle for plurisubharmonic functions).
Let φ : D → R be a plurisubharmonic function, and let S ⊂ D be a compact
holomorphic surface. Then

max
S

φ = max
∂S

φ.

Or equivalently, if the function φ|S achieves its maximum in the interior of
the surface S, then it is constant.

Proof Let h : W → S be a holomorphic parametrization by a domain
W ⊂ Cr with compact closure. The function g = φ ◦ h is plurisubharmonic.
Suppose the contrary: it achieves a maximum at a point ζ ∈ Int(S). Then
its restriction to each line through ζ is a subharmonic function achieving a
local maximum at ζ and hence, is equal to the same constant g(ζ) for all
lines. Finally, the function g is constant on a neighborhood of the point
ζ. The above argument shows that the level set {g = ζ} is open, and it is
closed by continuity. This together with connectivity implies that the latter
level set coincides with all of W , hence g ≡ const. The theorem is proved.

2

Theorem 7.54 Let D ⊂ Cn be a domain, ζ ∈ ∂D. Let there exist a neigh-
borhood U = U(ζ) ⊂ Cn and a plurisubharmonic function φ : U → R such
that D ∩ U = {φ < 0}. Then D is L-convex at ζ.

Proof Suppose the contrary: D is not L-convex at ζ. Then there exists
a compact holomorphic surface S ⊂ U through ζ such that ∂S ⊂ D ∩ U .
Thus, φ|S is a plurisubharmonic function such that φ|∂S < 0 and φ(ζ) = 0,
– a contradiction to the Maximum Principle. The theorem is proved. 2

Corollary 7.55 Let φ : V → R be a plurisubharmonic function. Let D =
{φ < 0} b V . Then D is L-convex, and hence, a domain of holomorphy.

Proof The domain D is L-convex by Theorem 7.54. This together with
Theorems 7.25 and 7.36 implies that D is a domain of holomorphy. 2
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8 Stein manifolds, Dolbeault cohomology and sheaves

8.1 Stein manifolds: definition and main properties

Definition 8.1 A complex manifold M is said to be holomorphically con-
vex, if the holomorphically convex hull (H(M)-hull) of each its compact
subset is a compact subset. We say that the holomorphic functions on M
separate points, if for every two distinct points x 6= y in M there exists a
holomorphic function f : M → C such that f(x) 6= f(y).

Definition 8.2 A complex manifold M , set n = dimM , is said to be a
Stein manifold, if it satisfies the following conditions:

1) M is holomorphically convex;
2) the holomorphic functions on M separate points;
3) for every z ∈M there exist n holomorphic functions f1, . . . , fn on M

whose differentials at z are linearly independent: that is, the holomorphic
vector function (f1, . . . , fn) : M → Cn is a local biholomorphism at z.

Example 8.3 Every domain of holomorphy in Cn is obviously Stein. Let
now M ⊂ CN be a holomorphic submanifold. Then it is Stein. Indeed, let
H denote the collection of projections M → C to the coordinate axes, which
are holomorphic functions. The functions from class H obviously separate
points. Condition 3) holds even for functions from class H. Finally, the
H-convex hull of each compact subset in M is a bounded closed subset in
CN contained in M . Hence, it is compact. The next big theorem states the
converse.

Theorem 8.4 (Embedding Theorem). Each Stein manifold can be em-
bedded as a submanifold in CN for appropriate N . This is true for N =
2n+ 2, where n is the dimension of the manifold.

Corollary 8.5 Every domain of holomorphy in Cn can be embedded as a
submanifold in C2n+2. In particular, every geometrically convex domain in
Cn can be embedded as a submanifold in C2n+2.

Example 8.6 The unit disk D1 ⊂ C is Stein. It admits an embedding as a
submanifold in CN . The proof of this statement is non-trivial. An exercise
from Task 4 asks to prove the existence of its embedding to C2 by using
polynomial automorphisms with Fatou–Bieberbach domains.
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We will not prove Theorem 8.4 in full generality. We will sketch its
proof and prove some parts of it. The proof uses Dolbeault cohomology and
sheaves. The corresponding background material will be presented later on.

In what follows we will provide another important example of Stein man-
ifolds: envelopes of holomorphy. They form a special class of Riemann do-
mains: complex manifolds that admit locally biholomorphic projection to
Cn. They are the domains of maximal holomorphic extension of all holo-
morphic functions on a given Riemann domain.

8.2 Riemann domains and their holomorphic extensions

Definition 8.7 A n-dimensional Riemann domain is a pair (X,π), where
X is a connected Hausdorff topological space with countable base and π :
X → Cn is a continuous mapping that is a local homeomorphism: each
point x ∈ X has a neighborhood U = U(x) ⊂ X such that the restriction
π|U is a local homeomorphism of the domain U onto a neighborhood of the
image π(x). The maximal number of preimages of a point in Cn will be
called the number of sheets.

Remark 8.8 A Riemann domain has a natural structure of n-dimensional
complex manifold lifted from the base. That is, the holomorphic atlas is
formed by the above neighborhoods U(x), which are identified by π with
domains in Cn. The projection π is holomorphic.

Example 8.9 A domain in Cn is a trivial example of Riemann domain with
identical projection and one sheet. Another example is the double covering
(two-sheeted Riemann domain)

π : C2 \ {w = 0} → C2 \ {w = 0} : (z, w) 7→ (z, w2). (8.1)

The latter example can be generalized as follows. Let us replace the above
deleted z-axis by an arbitrary real two-dimensional subspace L ⊂ C2, e.g.,
L = R2. The connected double covering over C2 \ L is a Riemann domain
homeomorphic to C2 \ {w = 0}. But as the next proposition shows, its
structure of complex manifold could be different.

Definition 8.10 Let (X,πX), (Y, πY ) be Riemann domains over Cn. A
Riemann domain mapping φ : (X,πX) → (Y, πY ) is a continuous mapping
φ : X → Y that forms a commutative diagram with the projections

πX = πY ◦ φ :

φ is a holomorphic mapping of complex manifolds, by definition.
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In what follows for a Riemann domain X by H(X) we will denote the
space of holomorphic functions on the complex manifold X. Let S ⊂ H(X)
be a subset.

Definition 8.11 An S-extension of a Riemann domain (X,πX) is a pair of a
Riemann domain (Y, πY ) and a Riemann domain mapping of φ : (X,πX)→
(Y, πY ) such that for every f ∈ S there exists a function F ∈ H(Y ) such
that f = F ◦ φ. In the case, when S = H(X), we call the pair ((Y, πY ), φ)
a holomorphic extension.

Example 8.12 Let Ω ⊂ ∆ be a Hartogs figure in a polydisk ∆. Then ∆ is
a holomorphic extension of the domain Ω, by Hartogs’ Theorem.

In what follows we discuss two examples: a double-sheeted Riemann
domain with a one-sheeted holomorphic extension; a one-sheeted domain
with two-sheeted holomorphic extension.

Proposition 8.13 Consider the Riemann domain (X,πX) that is a con-
nected double covering over C2 \ R2. Then for every function f ∈ H(X)
there exists a holomorphic function F : C2 → C such that f = F ◦ π. In
other words, the trivial one-sheeted Riemann domain (C2, Id) is a holomor-
phic extension of the two-sheeted domain (X,πX) via the mapping φ = πX :
X → C2.

Proof Let (z, w) denote the standard coordinates on C2. Let us introduce
the new coordinates:

(z, w̃), w̃ = w − iz2.

Set
V = {Im w̃ > −|z|2} ⊂ C2.

We show that
1) V does not intersect R2 and is simply connected;
2) each function holomorphic on V extends holomorphically to all of C2.
Statement 1) implies that there exists a continuous inverse mapping

π−1 : V → X. Statement 2) implies that for every f ∈ H(X) the function
F = f ◦ π−1|V extends holomorphically to C2. It satisfies the equality
f = F ◦ π on π−1(V ) and hence, everywhere by uniqueness of analytic
extension. This will prove the proposition.
Proof of Statement 1). Let us first show that V ∩R2 = ∅. Suppose the
contrary: there exists a point p ∈ V ∩ R2. Let (z, w) denote its standard
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coordinates: then z, w ∈ R. One has

Im w̃ = Im(w − iz2) > −|z|2, (8.2)

by the definition of the domain V . The left-hand side in (8.2) equals −z2 =
−|z2|, since z, w ∈ R. Hence, (8.2) takes the form −|z|2 > −|z|2, – a
contradiction. Hence, V ∩ R2 = ∅.

The mapping (z, w̃) 7→ (z, t), t = w̃+i|z|2 sends V diffeomorphically onto
the direct product C× {Im t > 0}. Therefore, V is contractible. Statement
1) is proved. 2

Proof of Statement 2). For every r > 0 set

Wr = Dr × {Im w̃ > −r
2

4
},

Ar = {r
2
< |z| < r} × {Im w̃ > −r

2

4
},

Br = Dr × {Im w̃ > 0}, Ωr = Ar ∪Br ⊂Wr.

One has Ωr ⊂ V , by definition. On the other hand, Ωr is a Hartogs-like
figure in Wr: each function holomorphic on Ωr extends holomorphically to
Wr, as in Hartogs’ Theorem. The domains Wr form an increasing family of
domains exhausting C2, as r → +∞. The three latter statements together
imply that every function holomorphic on V extends holomorphically to all
of them, and hence, to C2. Statement 2) is proved. 2

Statements 1) and 2) imply the proposition, as was shown above. 2

Remark 8.14 The Riemann domain given by the double covering (8.1)
over the complement to a complex line in C2 obviously does not satisfy
the statement of Proposition 8.13. Namely, the coordinate w of the covering
space takes different values ±1 on two distinct preimages (0,±1) of the point
(0, 1).

Now let us construct a domain D ⊂ C2 (one-sheeted Riemann domain)
that admits a two-sheeted holomorphic extension. To do this, consider the
parallelogram Π with the vertices (−4, 0), (0, 1), (4, 1), (0, 0) drawn on the
plane

(x, t) ∈ R2, x = Re z, t = |w|,

see Fig. 3. Set
D̃ = {(z, w) | (Re z, |w|) ∈ Π}.
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Figure 3: The parallelogram Π: D̃ = {(z, w) | (Re z, |w|) ∈ Π}.

Consider now the projection

π : C2 → C2, (z, w) 7→ (eiz, w).

Proposition 8.15 The restriction π|
D̃

is a bijection of the domain D̃ onto
its image

D = π(D̃) ⊂ C2.

Thus, (D̃, π) is a one-sheeted Riemann domain.

Proof The proposition is equivalent to the statement that the parallelo-
gram Π is disjoint from its images under the action of the group of trans-
lations (x, t) 7→ (x + 2πm, t), m ∈ Z. The latter statement follows from
construction and the inequality 2π > 4. This proves the proposition. 2

Let us also consider the trapezoid Q in the (x, t)-plane with vertices
(−4, 0), (0, 1), (4, 1), (4, 0), which contains Π. Consider the corresponding
domain

W = {(z, w) | (Re z, |w|) ∈ Q} ⊃ D̃,

see Fig. 4.

Proposition 8.16 The projection π : W → C2 is a two-sheeted Riemann
domain. Every function holomorphic on one-sheeted Riemann domain D̃
extends holomorphically to W .

Proof The trapezoid Q intersects its translation image Q + (2π, 0), by
construction and the inequality 2π < 8. This implies that the similar trans-
lation image of the domain W intersects W . This implies that the projection
π : W → C2 is non-injective. It is easy to show that the latter projection is
two-sheeted, since Q+ (2πm, 0) does not intersect Q for m 6= 0,±1, by the
inequality 4 < 2π < 8. This proves the first statement of the proposition.
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Figure 4: The trapezoid Q ⊃ Π: W = {(z, w) | (Re z, |w|) ∈ Q} ⊃ D̃.

Let us prove its second statement. Fix arbitrary

0 < r < 1, 0 < δ < min{r, 1− r}.

Set
Wr,δ = 4(r + δ − 1) < Re z < 4(r − δ), |w| < r + δ},

Ar,δ = {4(r + δ − 1) < Re z < 4(r − δ), r − δ < |w| < r + δ},

Br,δ = {4(r + δ − 1) < Re z < 0, |w| < r + δ}, Hr,δ = Ar,δ ∪Br,δ.

One has
Hr,δ ⊂Wr,δ ∩ D̃, Wr,δ ⊂W.

The domain Hr,δ is a kind of Hartogs’ figure in Wr,δ. That is, every func-
tion holomorphic on Hr,δ extends holomorphically to Wr,δ, as in Hartogs’

Theorem. In particular, this is true for holomorphic functions on D̃ ⊃ Hr,δ

for every r and δ as above. Taking r close to 1 and δ small enough we get
that the domain Wr,δ covers arbitrary given compact subset in the product
U = {0 < Re z < 4} × {|w| < 1}. This implies that each function holo-
morphic on D̃ extends to a function holomorphic on the union W = D̃ ∪U .
This proves the proposition. 2

Definition 8.17 Consider two S-extensions φj : (X,πX) → (Yj , πj), j =
1, 2. We say that φ1 ≤ φ2, if φ1 is induced from the extension φ2. That is,
there exists a Riemann domain mapping ψ : (Y1, π1)→ (Y2, π2) such that

ψ ◦ φ1 = φ2.
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Remark 8.18 In the above definition one has π1 = π2 ◦ ψ. The mapping
ψ is an S-extension. In more detail, let f ∈ S, Fj : Yj → C be holomorphic
functions such that f = Fj ◦ φj . Then

F1 = F2 ◦ ψ. (8.3)

This follows from the equality

f = F1 ◦ φ1 = F2 ◦ φ2 = F2 ◦ ψ ◦ φ1,

which implies that (8.3) holds on φ1(X) ⊂ Y1, and hence, on all of Y1, by
connectivity and uniqueness of analytic extension.

Definition 8.19 The S-envelope of holomorphy of a Riemann domain (X,πX)
is its maximal S-extension. In the case, when S = H(X), it is called the
envelope of holomorphy.

Remark 8.20 Let G : (X,πX)→ (Y, πY ) be an S-envelope of holomorphy.
Then for every S-extension φ : (X,πX) → (Z, πZ) there exists a Riemann
domain mapping ψ : (Z, πZ)→ (Y, πY ) such that G = ψ ◦ φ.

Example 8.21 Let D ⊂ Cn be a domain of holomorphy: there exists a
holomorphic function on it that extends analytically to no point of the
boundary. Then the Riemann domain (D, Id) is its own envelope of holo-
morphy. In particular, this holds in the case, when D = Cn.

Example 8.22 Let Ω ⊂ ∆ be a Hartogs figure in a polydisk ∆ such that
every holomorphic function on Ω extends holomorphically to ∆. Then
Id : (Ω, Id) → (∆, Id) is an envelope of holomorphy. This follows from
the statement of the previous example and the fact that ∆ is a domain of
holomorphy, by holomorphic convexity and Oka’s Theorem 7.10.

Example 8.23 Consider the Riemann domain (X,πX) that is a connected
double covering over C2 \ R2. Then πX : (X,πX)→ (C2, Id) is its envelope
of holomorphy. This follows from Proposition 8.13 and the last statement
of Example 8.21.

Remark 8.24 Let (X,πX) be a Riemann domain, S ⊂ H(X). If its S-
envelope of holomorphy exists, then it is unique up to isomorphism. Indeed,
let Gj : (X,πX) → (Yj , πj), j = 1, 2, be two S-envelopes of holomorphy.
Then there exist Riemann domain mappings

φ : (Y1, π1)→ (Y2, π2), ψ : (Y2, π2)→ (Y1, π1), G2 = φ ◦G1, G1 = ψ ◦G2,
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by the definition of S-envelope. The two last equalities imply that G1 =
ψ ◦ φ ◦G1. Therefore, ψ ◦ φ = Id on G1(X), hence, on all of Y1. Similarly,
G2 = φ ◦ ψ ◦G2 and φ ◦ ψ = Id. Hence, the mapping φ is an isomorphism
of Riemann domains: the S-envelopes (Yj , πj).

Theorem 8.25 (Thullen). For every Riemann domain (X,πX) and every
S ⊂ H(X) its S-envelope of holomorphy exists.

Proof Let (X,πX) be a Riemann domain, n = dimX.
Case 1): S = {f}, f ∈ H(X). We construct the S-envelope analo-

gously to the construction of the Riemann surface for the maximal analytic
extension of a holomorphic function of one variable. To do this, let us con-
sider the following space of germs.

In what follows by (g, z0) we denote the germ of a function g at z0. Set

J = {(g, z0) | z0 ∈ Cn, g is holomorphic on a neighborhood of z0}.

We introduce the topology on J as follows. Let (g, z0) ∈ J , U = U(z0) ⊂ Cn
be a neighborhood where g is holomorphic. Set

WU (g, z0) = {(g, z) | z ∈ U} ⊂ J . (8.4)

The sets WU (g, z0) taken for all (g, z0) ∈ J form a base of topology. There
is a natural continuous locally homeomorphic projection

π : J → Cn : (g, z) 7→ z.

Proposition 8.26 The topological space J thus obtained is Hausdorff.

Proof We have to show that any two distinct germs (g1, z1) 6= (g2, z2) have
disjoint neighborhoods. In the case, when z1 6= z2 this statement is obvious.
Let z1 = z2 = z. Then for every connected neighborhood U = U(z) ⊂ Cn
where both g1 and g2 are holomorphic the equality g1 = g2 = 0 does not
hold on an open subset in U . Indeed, otherwise, g1 ≡ g2 on U , by uniqueness
of analytic extension, hence (g1, z) = (g2, z), – a contradiction. Thus, the
open sets WU (g1, z), WU (g2, z) are disjoint. This proves the proposition. 2

Fix a point x ∈ X. Let

U = U(x) ⊂ X, V = V (πX(x)) ⊂ Cn

be the neighborhoods that are homeomorphic under the projection πX . Let
π−1
X,x denote its inverse sending πX(x) to x, thus V to U . The function

Fx = f ◦ π−1
X,x
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is holomorphic on V . Set

G : X → J , G(x) = (Fx, πX(x)) for every x ∈ X,

Y = the connected component of G(X) in J , πY = π|Y .

The pair (Y, πY ) is a Riemann domain, and G : (X,πX) → (Y, πY ) is an
S-extension. Let us prove its maximality, i.e., that it is an S-envelope of
holomorphy.

Let ψ : (X,πX)→ (Z, πZ) be another S-extension. That is, there exists
a holomorphic function F : Z → C such that f = F ◦ ψ. Let us construct a
Riemann domain mapping φ : (Z, πZ)→ (Y, πY ) such that

G = φ ◦ ψ. (8.5)

To do this, fix a point x0 ∈ X, set z0 = ψ(x0) ∈ Z. For every z ∈ Z let
π−1
Z,z = π−1

Z denote the inverse defined as above, which sends πZ(z) to z. Set

φ(z) = (F ◦ π−1
Z,z, πZ(z)) ∈ J .

The mapping φ is continuous and open and πZ = π ◦φ. One has φ(Z) ⊂ Y .
This follows from the connectedness of the space Z and the equality

(F ◦ π−1
Z,z, πZ(z0)) = (F ◦ ψ ◦ π−1

X,x0
, πX(x0)) = (f ◦ π−1

X,x0
, πX(x0)),

which implies that the latter germ and φ(Z) lie in the same connected com-
ponent Y of the space J .

The mapping φ : Z → Y thus constructed is a mapping of Riemann
domains that satisfies (8.5), by definition. Thus, ψ ≤ G and hence, G :
(X,πX)→ (Y, πY ) is an S-envelope of holomorphy.

Case 2): general. The proof repeats the above arguments but for the
space J replaced by another space JS of germs of S-families of holomorphic
functions. Namely, we consider families of germs

(gs, z0)|s∈S , gs are holomorphic in the same neighborhood U = U(z0) ∈ Cn;

they are called S-families of germs of holomorphic functions. Two S-families
(gs, z0) and (hs, z0) are equivalent, if there exists a neighborhood U = U(z0)
where gs are holomorphic and gs ≡ hs. The space JS mentioned above is
the space of S-germs with the topology defined as in the space J , see Case
1). Theorem 8.25 is proved. 2
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Theorem 8.27 (Oka). The envelope of holomorphy of every Riemann do-
main is a holomorphically convex manifold.

Proposition 8.28 (Task 5, Part 1, Problem 5). The holomorphic func-
tions on every envelope of holomorphy separate points.

Corollary 8.29 Every envelope of holomorphy is a Stein manifold.

Proof Let (Y, πY ) be an n-dimensional envelope of holomorphy. The co-
ordinate functions fj = zj ◦ πY : Y → C are holomorphic and have linearly
independent differentials at each point. This together with the above theo-
rem and proposition implies that Y is a Stein manifold. 2

8.3 One-dimensional ∂̄-problem

The ∂̄-problem has the following versions:
- Given a function g(z) of one variable, find a function f such that

∂̄f

∂z̄
= g. (8.6)

- Given a differential m–form ω find an (m− 1)-form α such that

∂̄α = ω. (8.7)

The results on ∂̄-problem form an important base for many famous re-
sults in complex analysis and related topics such as quasiconformal map-
pings, Teichmüller theory, moduli spaces of Riemann surfaces, algebraic
geometry. It has many applications in the above-mentioned domains and
complex dynamics.

First we treat the ∂̄-problem for functions. Then we introduce ∂̄-operator
acting on differential forms, which defines Dolbeault complex and cohomol-
ogy. We solve the corresponding ∂̄-problem on polydisk by proving triviality
of Dolbeault cohomology (∂̄-Poincaré Lemma). Afterwards we apply this re-
sult together with elements of sheaf theory to show that each hypersurface
in a polydisk is the zero locus of a global holomorphic function.

Theorem 8.30 For every C∞ function g : D1 → C on the unit disk D1 ⊂ C
there exists a C∞ function f : D1 → C satisfying (8.6).
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Addendum. Let the function g = g(z, w1, w2) depend on additional
parameters (w1, w2), w1 being a point of a polydisk ∆R ⊂ Cm, w2 being a
point of some real manifold. Let g be C∞-smooth in (z, w1, w2) and holo-
morphic in w1. Then the corresponding function f can be chosen from the
same class: C∞-smooth in (z, w1, w2) and holomorphic in w1.

The addendum will be further applied to prove the above-mentioned ∂̄-
Poincaré Lemma. The proof of the theorem and the addendum will be split
into two steps: construction of a function f on arbitrary smaller disk; ex-
tension to the whole disk by appropriate passing to limit along a sequence
of exhausting disks; adjusting the construction to achieve regularity in pa-
rameters. In the proof we will use the following obvious remark.

Remark 8.31 If the function f solving (8.6) exists, then it is unique up to
addition of a holomorphic function.

Proposition 8.32 For every C∞ function g : D1 → C and every 0 < r < 1
the function

f(z) =
1

2πi

∫
Dr

g(ζ)

ζ − z
dζ ∧ dζ. (8.8)

is C∞-smooth in z ∈ Dr and satisfies (8.6). In the case, when g depends
on additional parameters as in the addendum, the function f satisfies the
statements of the addendum on the disk Dr.

Proof The above integral converges and is a well-defined continuous func-
tion, being an integral of a function O( 1

ζ−z ) over a real two-dimensional
domain. Fix arbitrary 0 < µ < ν < r < 1. Let ρ1 : C→ R be a C∞-smooth
function such that ρ1|Dµ ≡ 1 and ρ1|C\Dν ≡ 0. Set

ρ2 = 1− ρ1; ρ2|Dµ ≡ 0, ρ2|C\Dν ≡ 1, gj = ρjg, g = g1 + g2.

The integral (8.8) is the sum of the same integrals denoted fj , j = 1, 2, with
the function g replaced by gj : f = f1 + f2. The integral f2 is in fact an
integral over the annulus Dr \ Dµ, since g2 = 0 on Dµ. Therefore, it is a
holomorphic function in z ∈ Dµ, being an integral of a family of holomorphic
functions 1

ζ−z in a parameter ζ /∈ Dµ. Hence, ∂̄f2 = 0 on Dµ. Now for the
proof of the proposition it suffices to show that

∂̄f1

∂z̄
= g1. (8.9)
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The function g1 is defined on Dr and vanishes on the annulus Dr \ Dν .
Therefore, we can and will extend it to C as g1|C\Dr = 0. One has

f1(z) =
1

2πi

∫
C

g1(ζ)

ζ − z
dζ ∧ dζ =

1

2πi

∫
C

g1(u+ z)

u
du∧ du, u = ζ − z. (8.10)

Taking the ∂̄
∂z̄ -derivative yields

∂̄f1

∂z̄
(z) =

1

2πi

∫
C

∂̄g1

∂z̄
(u+ z)

du

u
∧ du

= − 1

2πi

∫
C

∂̄g1

∂z̄
(u+ z)du ∧ du

u
= − 1

2πi

∫
C
d(g1(u+ z)

du

u
)

The latter integral coincides with the same integral but taken over the disk
D2, since the subintegral form vanishes outside it, as does g1. It equals the
integral of the form g1(u + z)duu over the boundary ∂D2 minus the limit of
its integral over the circle ∂Dδ, by Stokes formula. Taking into account that
the former integral vanishes, as does g1(u+ z) on ∂D2, one has

∂̄f1

∂z̄
(z) = lim

δ→0
(

1

2πi

∮
∂Dδ

g1(u+ z)
du

u
).

The expression under the limit is equal to the mean value of the function
g1 over the circle of radius δ centered at z; this follows by substitution
u = δeiθ. Therefore, the limit equals g1(z) = g(z). This proves (8.9). The
function f1 is C∞, since the integral in (8.10) can be differentiated: the
derivatives of the subintegral expression have converging integrals, since the
differentiations do not affect the denominator u. The same argument proves
smoothness (holomorphicity) of the function f1 in the additional parameters
of the function g, taking into account that g1 = ρ1g, where ρ1 is parameter-
independent. The function f2 = f − f1 is holomorphic in z ∈ Dµ, as was
shown above, and it is obviously smooth (holomorphic) in the parameters
of the function g: it is defined by an integral over the annulus Dr \ Dµ,
the derivatives of the subintegral expression are well-defined and uniformly
bounded, as ζ ∈ Dr \ Dµ and z lies in a compact subset in Dµ. Finally,
the function f given by the integral (8.8) has appropriate regularity in the
product of the disk Dµ and the parameter spaces for every 0 < µ < r and
satisfies (8.6) in Dµ. The number µ can be taken arbitrarily close to r.
Hence, the same statements hold with Dµ replaced by Dr. The proposition
is proved. 2
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Proof of Theorem 8.30. Set

rn = 1− 1

2n
, fn(z) =

1

2πi

∫
Drn+1

g(ζ)

ζ − z
dζ ∧ dζ;

∂̄fn
∂z̄

= g on Drn+1 . (8.11)

In the case, when the functions fn converge with all the derivatives uni-
formly on compact subsets in D1 to a function f , the latter satisfies the
statements of the theorem. Let us show that one can modify the functions
fn inductively, replacing them by

f̃n = fn − Pn, Pn(z) being a polynomial,

so that the new functions f̃n converge. One has

∂̄f̃n = ∂̄fn = g on Drn+1 , (8.12)

by construction. This together with the above argument will prove the
theorem.

Induction base: n = 1. Set f̃1 = f1.
Induction step. Let f̃n be already constructed. Let us construct f̃n+1 so

that

|f̃n+1 − f̃n| <
1

2n
on Drn . (8.13)

The difference ψn = fn+1−f̃n is holomorphic on Drn+1 , by (8.12). Therefore,
its Taylor series converges to it uniformly on Drn b Drn+1 . Fix a Taylor
polynomial Pn such that

|ψn − Pn| <
1

2n
on Drn . (8.14)

Set f̃n+1 = fn+1 − Pn. Then inequality (8.13) holds by construction. The
induction step is over. The functions f̃n are constructed.

For every compact subset K b D1 there exists an N > 0 such that the
functions f̃n with n > N are well-defined on K and converge uniformly on K,
as n→∞. This follows from inequality (8.13), which implies that for every
n,m > N the difference f̃n− f̃m has module less than 1

2l
, l = min{m,n}− 1

on K. This together with the above discussion proves the theorem. 2

Proof of the addendum. The functions fn given by (8.11) have the same
regularity in parameters, as g, by Proposition 8.32. Let us show that the
above construction of the functions f̃n can be done so that they have the
same regularity and converge with derivatives uniformly on compact subsets
in the product of the disk D1 and the parameter space. To do this, we use
the following proposition.
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Proposition 8.33 Let a function f(w, s) be C∞-smooth in the product
∆R × S, where ∆R ⊂ Cn is a polydisk, R = (R1, . . . , Rn), Rj > 0, and
S is a manifold. Let f be holomorphic in w ∈ ∆R. Then its Taylor series
in powers of w with coefficients depending on s converges to f uniformly on
compact sets together with all the derivatives.

Proof Let us first prove uniform convergence of the Taylor series. Fix
0 < µ < ν < 1 and a compact subset K b S. Set

M = max
∆νR×K

|f |, R = (R1, . . . , Rn).

Let ck(s) denote the Taylor coefficient of the function f at wk. One has

|ck(s)| ≤
M

(νR)k
for every s ∈ K,

by the Cauchy Inequalities. Therefore, for every z ∈ ∆µR one has

|ck(s)zk| ≤Mβ|k|, β =
ν

µ
< 1.

The right-hand sides of the above inequality form a series converging to
M(1 − β)−n. This implies the uniform convergence of the Taylor series on
∆µR ×K. The convergence of derivatives is proved by the same argument
with f being replaced by its derivatives. The proposition is proved. 2

Let S denote the space of the variables w2. Let ∆ denote the polydisk
that is the product of the z-disk D1 and the polydisk ∆R of the variables
w1. Fix a compact exhaustion K1 b K2 b · · · = S. Set

δn = (1− 1

2n
)R, R = (R1, . . . , Rn).

In the above construction of the functions f̃n let us choose the polynomial
Pn so that inequality (8.14) holds on the product Drn ×∆δn ×Kn for the
function ψn − Pn and all its mixed derivatives in the variable z and the
parameters up to order n. Then the functions f̃n thus constructed converge
with derivatives uniformly on compact sets. The limit is C∞-smooth and is
holomorphic in w1, by Weierstrass Theorem. The addendum is proved. 2
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8.4 Dolbeault cohomology and ∂̄-Poincaré Lemma

Let M be a complex manifold, n = dimM . For every x ∈ M let Λx = Λ1
x

denote the space of R-linear complex valued functionals on TxM , which is
a 2n-dimensional complex vector space. Each functional under question is
a sum of its C-linear part and C-antilinear part, as we have seen at the
beginning of the cours. Let Λ1,0

x , Λ0,1
x denote respectively the space of C-

linear and C-antilinear functionals, which are complex vector spaces. One
has

Λ1
x = Λ1,0

x ⊕ Λ0,1
x .

Set
Λp,qx = (Λ1,0

x )∧p ∧ (Λ0,1
x )∧q.

The space of complex-valued R-polylinear skew-symmetric m-forms on TxM
is

Λmx = ⊕p+q=mΛp,qx .

Definition 8.34 A complex-valued differential m-form ω on M is of type
(p, q), if its restriction to every tangent space TxM belongs to the space Λp,qx .

Set
Em = Em(M) = the space of C∞ m− forms,

Ep,q = the space of C∞ (p, q)− forms,

Em = ⊕p+q=mEp,q.

The differential d : Em → Em+1 sends each subspace Ep,q to the sum
Ep+1,q ⊕ Ep,q+1. Therefore,

d = ∂ + ∂̄, ∂ : Ep,q → Ep+1,q, ∂̄ : Ep,q → Ep,q+1.

Example 8.35 Let f : M → C be a smooth function, i.e., f ∈ E0. Then
∂̄f is the C-antilinear part of the differential df introduced at the beginning
of the cours. A (p, q)-form on a domain in Cn is a sum of forms of the type

ω =
∑
I,J

gIJ(z)dzI ∧ dzJ , I = (i1, . . . , ip), J = (j1, . . . , jq), (8.15)

i1 < · · · < ip, j1 < · · · < jq,

dzI = dzi1 ∧ · · · ∧ dzip , dzJ = dzj1 ∧ · · · ∧ dzjq ,

∂̄ω =

n∑
s=1

∑
I,J

∂̄

∂z̄s
gIJ(z)dzs ∧ dzI ∧ dzJ . (8.16)
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It is well-known that d2 = 0. This implies that

∂2 = ∂̄2 = 0,

since ∂2, ∂̄2 are the compositions of the squared differential d2 : Ep,q →
Ep+q+2 with the projections to Ep+2,q and Ep,q+2 respectively. Set

Zp,q = Ker(∂̄|Ep,q), Bp, q = Im(∂̄|Ep,q−1), Hp,q = Hp,q(M) = Zp,q/Bp,q.

The latter quotient spaces are called the Dolbeault cohomology of the mani-
fold M .

Remark 8.36 Every holomorphic mapping of complex manifolds G : M →
N induces the pullback mapping G∗ : Hp,q(N)→ Hp,q(M). The Dolbeault
cohomology of biholomorphically equivalent manifolds are isomorphic.

Theorem 8.37 (∂̄-Poincaré Lemma). For every polydisk ∆ = ∆r ⊂ Cn
one has

Hp,q = 0 whenever q > 0.

Proof The case of dimension one and degree one was treated in Theorem
8.30. Let us prove Theorem 8.37 in the general case. Let ω ∈ Ep,q, q > 0,
∂̄ω = 0. Let us show that there exists a form α ∈ Ep,q−1 such that ∂̄α = ω.
This will prove the theorem.

1) Reduction to the case (0, q). The expression (8.15) for the form ω can
be written as a sum

ω =
∑
I

dzI ∧ ωI , ωI =
∑
J

gIJdzJ ∈ E0,q,

∂̄ω = (−1)p
∑
I

dzI ∧ ∂̄ωI = 0.

The p-forms dzI are linearly independent. This together with the latter
equality implies that ∂̄ωI = 0. Suppose that we have proved the theorem
for (p, q) = (0, q). Then we can find (0, q− 1)-forms αI such that ∂̄αI = ωI .
Set

α = (−1)p
∑
I

dzI ∧ αI .

One has ∂̄α = ω, by definition. This proves the theorem in the general case.
2) Case (0, q): p = 0. Then

ω =
∑
J

gJdzJ , ∂̄ω = 0.
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Set
K = ∪J, gJ 6≡0{j1, . . . , jq} ⊂ {1, . . . , n},

|K| = the cardinality of the set K; |K| ≥ q.
We prove the existence of a form α such that ∂̄α = ω by induction in |K|.

Induction base: |K| = q. Then up to permutation of coordinates we can
and will consider that

ω = g(z)dz1 ∧ · · · ∧ dzq.

The equality ∂̄ω = 0 is equivalent to the statement that the function g
is holomorphic in zq+1, . . . , zn. There exists a C∞ function f : ∆ → C
holomorphic in the same variables such that

∂̄f

∂z1
= g,

by Theorem 8.30 and its addendum. Set

α = fdz2 ∧ · · · ∧ dzq.

One has ∂̄α = ω, by definition.
Induction step. Let we have proved the existence of the above form α in

the case, when |K| < l, l > q. Let us prove its existence for a form ω with
|K| = l. Up to permutation of coordinates, we can and will consider that
1 ∈ K. Then

ω =
∑
I

gIdz1 ∧ dzI +
∑
J

gJdzJ , I = (i1, . . . , iq−1), J = (j1, . . . , jq),

is, jr ∈ K ′ = K \ {1}.
The functions gI are holomorphic in variables zt, t /∈ K. This follows from
the equality ∂̄ω = 0 and linear independence of the collection of 1-forms
dz1 ∧ dzI and dzJ . Therefore, for every I there exists a C∞ function fI :

∆→ C holomorphic in the same variables such that ∂̄fI
∂z1

= gI . Set

β =
∑
I

fIdzI .

The difference ω − ∂̄β is a ∂̄-closed form, and it contains only products dzS
with S = (s1, . . . , sq), sj ∈ K ′ = K \{1}, by construction. One has |K ′| < l.
Therefore, there exists a form α such that ∂̄α = ω − ∂̄β, by the induction
hypothesis. Thus,

ω = ∂̄(α+ β).

The induction step is over. The proof of Theorem 8.37 is complete. 2
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8.5 Holomorphic hypersurfaces. Existence of defining and
extended holomorphic functions. Cousin problems

Recall that a holomorphic hypersurface in a complex manifold M is an
analytic subset A ⊂M such that each its point has a neighborhood U in M
where the set A ∩ U is defined as zero locus of a holomorphic function on
U : a local defining function. Here we study the question of the existence of
global defining function.

Definition 8.38 Let A ⊂ M be a holomorphic hypersurface in a complex
manifold M . For every x ∈ A by IA(x) we denote the ideal formed by the
germs of functions at x holomorphic on its neighborhood in M that vanish
on A. We know that it is a principal ideal: it has a generator that divides
each element of the ideal. A holomorphic function F : M → C is a global
defining function for the hypersurface A, if A = {F = 0} and for every point
x ∈ A the germ of the function F at x generates the corresponding ideal.

Theorem 8.39 Every holomorphic hypersurface in a polydisk has a global
defining function. The same statement holds for hypersurfaces in Cn.

The proof of the theorem will be postponed till we introduce sheaves. In
what follows we will prove its weaker version, under an additional topological
assumption.

First of all, let us present an approach to the proof of the theorem via
Cousin problems. To do this, we use the following proposition and corollary.

Proposition 8.40 Let (A, x) ⊂M be a germ of holomorphic hypersurface.
A germ of holomorphic function f at x generates the ideal IA(x), if and only
if there exists a neighborhood U = U(x) ⊂M such that f is holomorphic on
U , A ∩ U = {f = 0} and the differentials df(y) : TyM → C do not vanish
on an open and dense subset of points y ∈ A ∩ U .

Proof Let f be a generator of the ideal. Let us prove that its differential
does not vanish on the regular part Areg of the germ (A, x), which is open
and dense in A. Let A1, . . . , Ak denote the irreducible components of the
germ at x of the hypersurface A. Let hj denote the irreducible germs at x
of holomorphic functions such that Aj = {hj = 0}. We already know that

f = h1 . . . hk

up to a unity, see Proposition 5.10 and its proof. Without loss of generality
we consider that f is the above product: multiplication by unity does not
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change non-vanishing of differential at points of the zero locus A. The regu-
lar part Areg coincides with the complement of the set A to the singularities
of the sets Aj and to their intersections. We already know that dhj 6= 0 on
the regular part of the irreducible hypersurface Aj , see Theorem 4.28. This
implies that df 6= 0 on Areg.

Conversely, let f be a holomorphic function on a neighborhood U = U(x)
such that A ∩ U = {f = 0} and df does not vanish on an open and dense
subset in A. The germ at x of the function f belongs to the ideal IA(x).
Hence,

f = gh1 . . . hk.

The germ g is a unity. Indeed, otherwise its nonempty zero locus should lie
in A and hence, its irreducible factors are some of hj . Finally, f is divisible
by h2

j for some j and hence, df = 0 on the irreducible component Aj , – a
contradiction. The proposition is proved. 2

Corollary 8.41 Let A ⊂ M be a holomorphic hypersurface, x ∈ A, f be a
generator of the ideal IA(x). Then there exists a neighborhood U = U(x) ⊂
M such that f is holomorphic on U and for every y ∈ A ∩ U the germ of
the function f at y generates the ideal IA(y).

Proof There exists a neighborhood U = U(x) where f is holomorphic and
such that the differential df does not vanish on an open and dense subset
in A ∩ U . This together with Proposition 8.40 implies that f generates the
ideal IA(y) for every y ∈ A ∩ U and proves the corollary. 2

Let A ⊂M be a holomorphic hypersurface. Let us consider its covering
by open subsets Uj ⊂ M such that there exist holomorphic functions gj :
Uj → C for which A ∩ Uj = {gj = 0} and gj generate the ideals IAy for
every y ∈ A ∩ Uj . Then

hij =
gj
gi

(8.17)

are nonvanishing holomorphic functions on Ui ∩ Uj .
Let us consider the covering of the whole manifold by the above neigh-

borhoods Uj and the complement

U0 = M \A.

Set
g0 = 1, h0j =

gj
g0

= gj on U0 ∩ Uj . (8.18)
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Proposition 8.42 An analytic hypersurface A ⊂ M admits a global defin-
ing function, if and only if there exist nonvanishing holomorphic functions
fi : Ui → C∗ such that

fj
fi

= hij . (8.19)

Proof Let F be a defining function. Then the functions fj =
gj
F are

holomorphic and nonvanishing on Uj and satisfy (8.19). Conversely, let
fj : Uj → C∗ be nonvanishing holomorphic functions satisfying (8.19). Then

F =
gj
fj

is a global defining function: the latter fractions are holomorphic on the
domains Uj and coincide in their intersections, by (8.19). The proposition
is proved. 2

Definition 8.43 Let U be a covering of a manifold M by open subsets Uj .
Let hij : Ui∩Uj → C∗ be functions. We say that a collection of the functions
hij is a multiplicative cocycle, if hij = h−1

ji and for every indices i, j, k for
which Ui ∩ Uj ∩ Uk 6= ∅ one has

hij = h−1
ji , hijhjkhki = 1 on Ui ∩ Uj ∩ Uk. (8.20)

A collection (hij) is a multiplicative coboundary, if there exist functions
fj : Uj → C∗ satisfying equation (8.19). A multiplicative cocycle is called
C∞ (holomorphic), if so are hij .

Remark 8.44 Each coboundary is a cocycle. The converse is not true in
general.

Holomorphic (smooth) Multiplicative Cousin Problem. Given
a holomorphic (C∞) multiplicative cocycle (hij), find holomorphic (C∞)
nonvanishing functions fj : Uj → C∗ satisfying (8.19).

Corollary 8.45 Let M be a complex manifold such that each holomorphic
Multiplicative Cousin Problem can be solved. Then every holomorphic hy-
persurface in M admits a global defining function.

The corollary follows immediately from Proposition 8.42.
Studying the Multiplicative Cousin Problem is closely related to studying

the additive one introduced below.

103



Definition 8.46 Let U be a covering of a manifold M by open subsets Uj .
A collection of functions hij : Ui ∩ Uj → C is called an additive cocycle, if
hij = −hji and for every indices i, j, k for which Ui ∩ Uj ∩ Uk 6= ∅ one has

hij = −hji, hij + hjk + hki = 0 on Ui ∩ Uj ∩ Uk. (8.21)

A collection (hij) is an additive coboundary, if there exist functions fj : Uj →
C such that

fj − fi = hij on Ui ∩ Uj . (8.22)

(Each additive coboundary is a cocycle, as in the above remark.) An additive
cocycle is called C∞ (holomorphic), if so are hij .

Holomorphic (C∞) Additive Cousin Problem. Given a holomor-
phic (C∞) additive cocycle (hij), find holomorphic (C∞) functions fj : Uj →
C satisfying (8.22).

Remark 8.47 An Additive Cousin Problem for a cocycle hij generates the
multiplicative one for the cocycle ehij . If (fj) is a solution of the addi-
tive problem, then the functions efj form a solution of the multiplicative
one. But the converse is not directly true: taking logarithm transforms a
multiplicative cocycle to an additive cocycle modulo 2πiZ.

In what follows first we solve the smooth Additive Cousin Problem for
every manifold. Then we show that each holomorphic Additive Cousin Prob-
lem on polydisk can be solved. Afterwards we deduce a weak version of
Theorem 8.39.

Theorem 8.48 Every smooth Additive Cousin Problem on every real C∞-
smooth manifold can be always solved.

In the proof of the theorem we use the following well-known topological
fact.

Proposition 8.49 For every covering of a manifold M by open sets Uj
there exists its locally finite covering by open sets Vα such that for every α
there exists a i = i(α) such that V α is a compact subset in Ui(α). Every lo-
cally finite covering Vα admits a partition of unity: there exist C∞ functions
ρα : M → R with supports in Vα such that

∑
α ρα = 1.

Proof Fix a compact exhaustion K1 b K2 b · · · = M . Each point x ∈M
is contained in some Uj . Therefore, we can take its neighborhood V (x)
whose closure is a compact subset in Uj . Let us cover the compact K1 by
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a finite number the latter neighborhoods V (x). Let W1 denote their union.
The complement K2 \W1 is a compact set disjoint from the set K1. Let
us cover it by a finite number of neighborhoods V (x) disjoint from the set
K1. Let W2 denote their union. Then we cover similarly K3 \W2 etc. The
covering of the manifold M thus obtained is locally finite. The existence of
partition of unity for a locally finite covering is classical. The proposition is
proved. 2

Proof of Theorem 8.48. Let M be a manifold, U be its covering, (hij)
be a C∞ additive cocycle. Let Vα be a covering from the above proposition,
ρα be the corresponding partition of unity. Let us introduce the following
auxiliary functions fαj on each covering set Uj :

fαj =

[
ραhij on Vα ∩ Uj

0 on Uj \ Vα
; here i = i(α) : V α ⊂ Ui.

Set
fj =

∑
α

fαj .

Claim. The functions fj are well-defined and C∞ on Uj and satisfy
(8.22).
Proof Each function fαj is well-defined and C∞ on Uj ∩ Vα, by definition
and the inclusion V α ⊂ Ui. It is well-defined as a C∞ function on all of Uj
by the formula fαj = ραhij , since both functions coincide on a neighborhood
of the latter intersection in Uj and ρα = 0 outside Vα. Therefore, fj is well-
defined and C∞ in Uj (local finiteness of the covering by open sets Vα). On
the intersection Uj ∩ Uk one has

fαj − fαk = ρα(hij − hik) = ραhjk,

by definition and cocycle identity (8.21). This together with the equality∑
α ρα = 1 implies (8.22) and proves the claim. 2

The claim implies the statement of the theorem. 2

Theorem 8.50 (Cousin). Every holomorphic Additive Cousin Problem
on each polydisk is solvable.

Proof Let ∆ ⊂ Cn be a polydisk, U be its covering, (hij) be a holomorphic
additive cocycle. Let (hj), hj : Uj → C be a C∞ solution of the correspond-
ing Additive Cousin Problem, hj − hi = hij , which exists by Theorem 8.48.
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The (0, 1)-forms ∂̄hj on Uj are ∂̄-closed and coincide on the intersections of
the covering sets:

∂̄hj − ∂̄hi = ∂̄hij = 0 on Ui ∩ Uj ,

since the functions hij are holomorphic. Therefore, there exists a global
∂̄-closed C∞ (0, 1)-form ω on ∆ coinciding with ∂̄hj on Uj for every j. Let
f : ∆ → C be a C∞-solution of the ∂̄-problem: ∂̄f = ω. It exists by
Theorem 8.37. The functions

fj = hj − f

are holomorphic on Uj and satisfy (8.22), by construction. Therefore, they
present a solution of the holomorphic Cousin Problem. This proves the
theorem. 2

Definition 8.51 Let M be a complex manifold, A ⊂ M be a holomorphic
hypersurface. A continuous function G : M → C is said to be C0-defining
function of the hypersurface A, if A = {G = 0} and the following condition
holds. Let U ⊂ M be an open subset intersecting A, f : U → C be a
holomorphic function such that A ∩ U = {f = 0} and f generates the ideal
IA(y) for every y ∈ A ∩ U . Then f

G is a nonvanishing continuous function
on U .

Theorem 8.52 Let ∆ ⊂ Cn be a polydisk, A ⊂ ∆ be a holomorphic hyper-
surface that admits a C0-defining function. Then it admits a holomorphic
global defining function.

Proof Let us consider the Multiplicative Cousin Problem associated to A:
let a covering of the polydisk, gj and hij be the same, as in (8.17) and (8.18).
We pass to a covering by smaller simply connected sets, which we will denote
Uj . Set

hj =
gj
G
.

The functions hj are continuous nonvanishing on Uj . Let Hj denote contin-
uous branches of their logarithms on Uj . The differences

uij = Hj −Hi

are holomorphic in Ui∩Uj , being continuous branches of logarithms of holo-
morphic functions hij . They satisfy the cocycle identity uij + ujk + uki = 0
on triple intersections, by construction. Let vj : Uj → C denote the solution
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of the corresponding holomorphic Additive Cousin Problem: vj − vi = uij .
The functions

fj = evj

form a solution of the holomorphic Multiplicative Cousin Problem for the
initial cocycle hij . This together with Proposition 8.42 proves the theorem.

2

Definition 8.53 Let M be a complex manifold, A ⊂ M be an analytic
subset. We say that a function g : A → C is holomorphic, if it is locally
the restriction to A of a holomorphic function. That is, for every x ∈ A
there exist a neighborhood U = U(x) ⊂ M and a holomorphic function
G : U → C such that g = G on A ∩ U .

Theorem 8.54 Let ∆ ⊂ Cn be a polydisk. Let A ⊂ ∆ be a hypersurface
that admits a global defining holomorphic function

f : ∆→ C, A = {f = 0}; f generates the ideals IA(x), x ∈ A.

Then every holomorphic function g : A → C is the restriction to A of a
global holomorphic function G : ∆→ C.

Proof Let us reduce the theorem to an additive Cousin problem. Consider
a covering of the set A by open subsets Uj in ∆ such that on each Uj there
exists a holomorphic function gj : Uj → C for which gj |A∩Uj = g. Set

U0 = ∆ \A, g0 = 0.

One has gj − gi = 0 on A ∩ Ui ∩ Uj . Therefore,

gj − gi = fhij on Ui ∩ Uj , hij : Ui ∩ Uj → C is a holomorphic function,

since f generates the ideal IA(x) for every x ∈ A. The collection of functions
hij is a cocycle for holomorphic Additive Cousin Problem. Let hj denote
its solution: a collection of holomorphic functions hj : Uj → C such that
hj − hi = hij on Ui ∩ Uj . One has

gj − gi = fhij = fhj − fhi,

by construction. Therefore,

G = gj − fhj = gi − fhi on Ui ∩ Uj ,

and G is a global holomorphic function on ∆. One has G|A = g, since
gj − fhj = gj = g on A ∩ Uj , by definition. This proves the theorem. 2
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8.6 Sheaves and cohomology. Relation to Cousin problems
and singular cohomology

Definition 8.55 Let D be a topological space. A sheaf of Abelian groups
over the space D (called base) is a topological space J equipped with a
projection π : J → D satisfying the following conditions:

1) The projection π is a local homeomorphism: each point x ∈ J has
a neighborhood in J that is mapped by π homeomorphically onto a neigh-
borhood of the image π(x) in D;

2) for every x ∈ D the preimage π−1(x) has a structure of Abelian group;
3) the group structure is continuous.

Remark 8.56 Let us explain the above condition 3) in more detail. Set

J ◦J = {(x1, x2) ∈ J ×J | π(x1) = π(x2)} = (π×π)−1(diagonal ⊂ D×D).

Condition 3) is equivalent to the condition saying that the mapping

J ◦ J → J : (x1, x2) 7→ x1 − x2

is continuous.

Example 8.57 Let D be a manifold. Let J denote the space of germs of
functions (differential forms, more generally, sections of a vector bundle)
from a given class R from the following list.

1) R = Z,R,C: this is the space of germs of locally constant functions
with values in Z, R and C respectively;

2) D is a complex manifold and R = O is the space of germs of holo-
morphic functions (forms, sections);

3) R is the space of germs of C∞ functions (forms, sections).
On each one of the above spaces of germs we introduce the following

topology, which coincides with (8.4) in the case of holomorphic functions.
We treat the case of functions: the cases of forms (sections of vector bundles)
are treated analogously. Let (g, x) be a germ of function from class R at a
point x ∈ D defined on its neighborhood U = U(x) ⊂ D. Set

WU (g, x) = {(g, y) | y ∈ U}. (8.23)

The sets WU (g, x) form a basis of topology on the space of germs.

Remark 8.58 The spaces 1) and 2) of locally constant and holomorphic
germs are Hausdorff, by Proposition 8.26, while space 3) of smooth germs
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isn’t. Indeed, let f1, f2 denote two arbitrary germs of smooth functions of
one variable at the origin that coincide on the left interval x < 0 and differ
on the right interval x > 0. Then (f1, 0) 6= (f2, 0), but (f1, y) = (f2, y) for
every y < 0. Therefore, every two neighborhoods (8.23) of germs (f1, 0) and
(f2, 0) intersect. Thus, the topology is not Hausdorff.

Definition 8.59 A section of a sheaf J over a subset U in the base is a
continuous inverse π−1 : U → J , if it exists. A section over the whole base
is called a global section. The space of sections over a subset U is an Abelian
group, which we will denote JU . They are global sections of the preimage
π−1(U), which is a sheaf that is called the restriction to U of the sheaf J .

In all our examples the sheaf under question is always defined by the
collection of its sections over open subsets: the so-called pre-sheaf, see the
following definition.

Definition 8.60 Let D be a topological space, and let U be a base of topol-
ogy on D. A pre-sheaf of Abelian groups on D is a collection of Abelian
groups (JU )U∈U and homomorphisms JV → JU for U ⊂ V called restriction
homomorphisms that satisfy the following property: for every three subsets
U ⊂ V ⊂W one has

ρUV ◦ ρVW = ρUW .

Remark 8.61 The sections of a sheaf over basic open sets form a pre-sheaf.
Conversely, every pre-sheaf JU induces a sheaf J as follows. For every z ∈ D
let Uz denote the collection of basic open sets containing z. Set

Jz = lim
U∈Uz

indJU , J = ∪z∈DJz.

In more detail, Jz is the union of all the Abelian groups JU , U ∈ Uz quo-
tiented by the following equivalence relation: g1 ∈ JU1 is said to be equiva-
lent to g2 ∈ JU2 , we write

g1 'z g2,

if there exists a V ∈ Uz, V ⊂ U1∩U2 such that ρV U1g1 = ρV U2g2. The spaces
Jz inherit a natural Abelian group structure, and their union J equipped
with the natural topology is a sheaf over D. Namely, for every U ∈ U and
z ∈ U consider the natural projection

JU → Jz : g 7→ [g]z = g/ 'z .

The sets
WU (g) = {[g]z | z ∈ U}
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form a basis of topology on J . This is the topology of the sheaf J : the
local homeomorphicity of the projection [g]z 7→ z and continuity of group
structure follow from definition.

For every U ∈ U there is a natural homomorphism of the pre-sheaf
groups to the corresponding section spaces,

ψU : JU → Γ(U) :

for every g ∈ JU the image ψU (g) is the section sending z ∈ U to [g]z.

Remark 8.62 In general, the latter homomorphisms ψU are not isomor-
phisms. But for all the sheaves listed above (germs of functions, forms,
sections...) the pre-sheaves of their sections over basic open sets induce the
corresponding sheaves via the above construction; the corresponding home-
omorphisms ψU are isomorphisms by definition.

Definition 8.63 A complex of Abelian groups is a sequence of Abelian
groups Cj , j ≥ 0 with a mapping δ : Cj → Cj+1 called the differential,

0→ C0 → C1 → C2 . . . , δ2 = 0.

The elements of the group Cj are called cochaines. The j-th cohomology of
the complex is the quotient Abelian group

Hj = Hj
C = Ker(δ|Cj )/Im(δ|Cj−1).

The elements of the above kernel are called cocycles; the elements of the
latter image are called coboundaries.

In what follows we recall the construction of Čech complex and cohomol-
ogy associated to a sheaf. To do that, we will need the following background
material from the homological algebra. A homomorphism of two complexes
Cj and Ej is a sequence of homomorphisms f : Cj → Ej that forms a com-
mutative diagram with the differentials. Every homomorphism of complexes
induces homomorphisms in the cohomology:

f∗ : Hj
C → Hj

E .

Definition 8.64 Two homomorphisms of complexes f, g : Cj → Ej are
chain-homotopic, if there exists a sequence of homomorphisms θj : Cj →
Ej−1 such that

δ ◦ θj + θj+1 ◦ δ = f − g for all j. (8.24)
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Proposition 8.65 Every two chain-homotopic homomorphisms induce the
same homomorphism in the cohomology.

Proof Let f, g : Cj → Ej be chain-homotopic. Then for every c ∈
Ker(δ|Cj ) one has

f(c)− g(c) = δ(θj(c)) + θj+1(δc) = δ(θj(c)),

since δc = 0 by definition. Thus, the above difference is a coboundary,
and hence, represents zero element in the cohomology. This proves the
proposition. 2

Let J be a sheaf of Abelian groups over a topological space D. The
construction of Čech cohomology associates an Abelian group complex to
each covering U of the base D by open sets Uj . Set

Ck = ⊕Ui0∩···∩Uik 6=∅; is 6=ir for s 6=rΓ(Ui0 ∩ · · · ∩ Uik) :

Antisymmetry numeration convention. The direct sum Ck is an
Abelian group whose elements are collections (hi0...ik) indexed by those
unordered sets {i0, . . . , ik} of distinct indices, for which the above inter-
sections are non-empty. In what follows, we consider sections hi0...ik ∈
Γ(Ui0 ∩ · · · ∩ Uik) numerated by ordered collections I = (i0, . . . , ik): for
every I we take the corresponding section hI so that

hσI = (−1)signσhI for every permutation σ ∈ Sk+1. (8.25)

Definition 8.66 A collection h of sections hi0...ik ∈ Γ(Ui0 ∩ · · · ∩ Uik) nu-
merated by ordered indices I = (i0, . . . , ik) and satisfying antisymmetry
equation (8.25) is called a k-cochain.

Remark 8.67 The space of k-cochains is an Abelian group isomorphic to
Ck. In what follows the symbol Ck will always denote the space of k-cochains.

The differential δ : Ck → Ck+1 is defined as follows: for every h ∈ Ck
set

(δh)i0...ik+1
=

k+1∑
s=0

(−1)shi0...̂is...ik+1
|Ui0∩...Uik+1

, (8.26)

where îs means that we take all the indices il except for is, i.e., with l =
1, . . . , s− 1, s+ 1, . . . , k + 1. One has

δ2 = 0.
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Indeed, for every h ∈ Ck−1 one has

(δ2h)i0...ik+1
=

k+1∑
s=0

(−1)s(δh)i0...̂is...ik+1

=

k+1∑
s=0

(
∑
l<s

(−1)s+lhi0...̂ilil+1...̂isis+1...ik+1
+
∑
l>s

(−1)l+s−1hi0...̂isis+1...̂ilil+1...ik+1
.

The latter sum with l > s equals the former sum with l < s, and they are
taken with opposite signs. Therefore, they cancel out and δ2 = 0.

Definition 8.68 Let J , D, U and δ : Ck → Ck+1 be as above:

0→ C0 → C2 → C2 . . . .

The cohomology groups

Hk = Hk
U (D,J ) = Ker(δ|Ck)/Im(δ|Ck−1)

are called the Čech cohomology associated to the covering U with the coef-
ficients in the sheaf J .

Example 8.69 A collection h = (hj) ∈ C0 is a cocycle, if and only the
sections hj : Uj → J coincide on the intersections Ui ∩Uj and hence, define
a global section D → J . This implies that

H0
U (D,J ) = Γ(D).

A collection (hij) ∈ C1 is a cocycle, if and only if it is a cocycle in the sense
of the Cousin Problem:

hij + hjk + hki = 0 on Ui ∩ Uj ∩ Uk.

A cocycle (hij) is a coboundary, if and only if the corresponding Cousin
Problem can be solved: there exists a collection of sections hs : Us → J
such that hj−hi = hij . Therefore, the non-vanishing of the first Čech coho-
mology class of a given cocycle in C1 represents an obstruction for solving
the corresponding Cousin Problem.

Definition 8.70 Let V, U be two coverings of a topological space D by
open subsets Vα, Uj ⊂ D respectively. We say that V < U , if for every
Vα ∈ V there exists a covering element Uφ(α) ∈ U such that Vα ⊂ Uφ(α).
(The correspondence α 7→ φ(α) may be not unique.)
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For every index correspondence φ : α 7→ φ(α) as above we define the
following mapping between cochain spaces

ρφ : CkU → CkV : (ρφh)α0...αk = hφ(α0)...φ(αk). (8.27)

The mappings ρφ commute with differentials and form a mapping of cochain
complexes. Thus, they induce the mappings

(ρφ)∗ : Hk
U → Hk

V .

Proposition 8.71 (Task 5, part 2, Problem 1). For every two cover-
ings V < U and two index correspondences φ1 and φ2 as in the above defini-
tion the cochain complex mappings ρφ1 , ρφ2 : CkU → CkV are chain-homotopic:
there exist homomorphisms θk : CkU → Ck−1

V such that

ρφ2 − ρφ1 = δθk + θk+1δ. (8.28)

Equality (8.28) holds for homomorphisms

θl : C lU → C l−1
V , (θlh)α0...αl−1

=
l−1∑
s=0

(−1)shφ1(α0)...φ1(αs)φ2(αs)...φ2(αl−1).

Corollary 8.72 For every coverings V < U the induced homomorphism
(ρφ)∗ : Hk

U → Hk
V does not depend on the choice of index mapping φ.

The corollary follows from Propositions 8.71 and 8.65.
Now let us define the covering-independent Čech cohomology

Hk(D,J ) = lim
U
Hk
U (D,J ).

Here we take the inductive limit under passing to smaller and smaller cov-
erings. In more detail,

Hk(D,J ) = (⊕UHk
U (D,J ))/ ':

by definition, c1 ∈ Hk
U is equivalent to c2 ∈ Hk

V , if there exists a smaller
covering W < U ,V with the following property. Let φ : W → U , ψ : W →
V denote the corresponding index mappings such that Wα ⊂ Uφ(α), Vψ(α).
Then (ρφ)∗(c1) = (ρψ)∗c2.

Remark 8.73 One has Hk(D,J ) = 0, if and only if for every covering U
and every c ∈ Hk

U (D,J ) there exists a smaller covering V < U , let φ : U → V
denote the corresponding inclusion mapping, such that (ρφ)∗c = 0 in Hk

V .
Given a covering U , one has a natural homomorphic projection

ρ : Hk
U (D,J )→ Hk(D,J ). (8.29)
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Proposition 8.74 The latter projection is an isomorphism, if for every
other covering V there exists a smaller covering W < U ,V such that the
mapping ρφ : Hk

U (D,J )→ Hk
W(D,J ) is an isomorphism.

The proposition follows from definition and the above remark.

Theorem 8.75 Let M be a real manifold, n = dimM . Let J = Z be
the sheaf of locally constant integer-valued functions. Then the cohomology
groups Hk(M,Z) are isomorphic to the corresponding singular cohomology
groups denoted by the same symbols.

The theorem is proved below. To do this, fix an arbitrary triangulation T
of the manifold M . Every simplex of the triangulation T (of any dimension
k) will be identified with the collection of vertices A0, . . . Ak. Let us consider
the simplicial complex

0→ C1
T → C2

T → . . . , CkT = ⊕simplexes A0...AkZ.

Thus, each element of the group CkT is a collection of integer numbers indexed
by unordered collections of k+1 distinct vertices of the triangulation T that
are vertices of the same simplex. Let us consider the collections of integer
numbers hA0...Ak numerated by ordered vertex collections A = (A0, . . . , Ak)
satisfying the antisymmetry relation

hσA = (−1)σhA for every σ ∈ Sk+1.

A collection of integers hA satisfying the latter antisymmetry relation is
called a simplicial k-cochain. The k-cochains form an Abelian group iso-
morphic to CkT . From now on by CkT we will denote the group of k-cochains
associated to the triangulation T . The differential δ : Ck → Ck+1 acts as
follows. Let c ∈ Ck, and let A0 . . . Ak be a simplex of the triangulation T
(with ordered vertices). Set

(δc)A0...Ak+1
=

k+1∑
s=0

(−1)jcA0...Âs...Ak+1
.

One has δ2 = 0, as in the case of sheaf cohomology (the same calculation).
The quotients

Hk
T = Ker(δ|CkT )/(Im(δ|Ck−1

T
)

are called the cohomology groups of the simplicial complex, or briefly, the
simplicial cohomology.
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Theorem 8.76 The simplicial cohomology of a triangulated manifold is
naturally isomorphic to its (triangulation independent) singular cohomology.

This is a classical theorem from topology. We will use it as a given theorem
and will not prove it here.

For each vertex v of the triangulation let Stv denote the union of the
adjacent simplexes of higher dimension: the latter union is an open subset in
M called the star at the point v. The stars form a covering of the manifold
M , which will be denoted by St(T ).

Proposition 8.77 There exist natural isomorphisms

CkT ' CkSt(T )(M,Z), Hk
T ' Hk

St(T )(M,Z). (8.30)

Proof For every vertices v0, . . . , vk of the triangulation T the corresponding
stars intersect, if and only if the vertices form a simplex of the triangulation.
This implies that each k-cochain with integer coefficients can be considered
as a collection of integers hv0...vk indexed by k-simplexes with ordered ver-
tices v0, . . . , vk. It can be obviously be viewed as a simplicial k-cochain,
and vice versa. This yields an isomorphism CkT ' CkSt(T )(M,Z), which
obviously commutes with the differential and induces an isomorphism in the
cohomology. The proposition is proved. 2

Proposition 8.78 Let T1, T2 be two triangulations of the manifold M so
that T2 is obtained by subdivision of some simplexes of the triangulation
T1: we will briefly write T2 < T1. Then St(T2) < St(T1). The natural
homomorphisms

ψ : CkT1 → CkT2 , ρφ : CkSt(T1) → CkSt(T2)

defined by restrictions from simplexes of the triangulation T1 to smaller sim-
plexes of the triangulation T2 form a commutative diagram with the first
isomorphism from (8.30). They induce isomorphisms in the cohomology
groups.

Proof The commutation with the isomorphism (8.30) follows from defini-
tion. The above natural mapping ψ : CkT1 → CkT2 induces an isomorphism in
the cohomology (a classical theorem). This together with the previous state-
ment implies that the corresponding mapping ρφ : CkSt(T1) → CkSt(T2) also
induces an isomorphism in the cohomology. This proves the proposition. 2
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Proposition 8.79 For every covering U of a manifold by open sets and
every given triangulation T there exists another triangulation obtained by
its subdivision whose star covering is inscribed into U .

Proof Let M be the underlying manifold. Fix some its triangulation T .
Consider a compact exhaustion K1 b K2 b · · · = M whose elements Kj

are unions of closures of star neighborhoods of vertices. The set K2 can be
covered by a finite number of sets Uj ∈ U . Therefore, one can subdivide
the simplexes in K2 barycentrically so that for every vertex of the new
triangulation in the set K1 its star neighborhood is contained in some Uj .
We extend the triangulation of the set K2 thus obtained to a triangulation
T ′ < T of the manifoldM so that T = T ′ onM \K3. To do this, it suffices to
do the following subdivision of each higher dimension simplex S = A0 . . . Ak
in K3 \ Int(K2) adjacent to K2. Let, say, the face Fk = A0 . . . Ak−1 be
not contained in K2. Fix a point O in the interior of the simplex A0 . . . Ak.
Let us first subdivide S by the simplexes Sj = A0 . . . Aj−1OAj+1 . . . Ak
with the vertex O and opposite face coinciding with a face of the ambient
simplex S. For every face Fj ⊂ K2. let us subdivide the corresponding
simplex Sj by simplexes with vertex O according to the subdivision of the
face Fj induced by the subdivision of the adjacent simplex in K1. The key
property of this construction is that the faces Fs 6⊂ K2 are not subdivided.
This implies that the union of the simplexes contained in K2 and those
simplexes that are adjacent to K2 and subdivided as above and the other
simplexes of the initial triangulation T forms a triangulation of the manifold
M coinciding with T on M \K3. Afterwards we subdivide new simplexes in
K3\K2 barycentrically to achieve that the star neighborhoods of the vertices
in K3 \ K2 be contained in some domains Uj . We extend the subdivision
thus obtained to a global triangulation via the above construction; then the
triangulation of the set K1 remains unchanged. Then we apply the same
procedure for the complement K4 \ K3 (the triangulation on K2 remains
unchanged) etc. The triangulation thus obtained is the one we are looking
for. 2

Proof of Theorem 8.75. Fix a triangulation T1 of the manifoldM . Let us
show that the projection ρ : Hk

St(T1)(M,J )→ Hk(M,J ) is an isomorphism.

Fix an arbitrary covering U < St(T1). Let T2 < T be a smaller triangulation
such that St(T2) < U : it exists by the above proposition. The inscription
homomorphism Hk

St(T1) → Hk
St(T2) is an isomorphism, by Proposition 8.78.

This together with Proposition 8.74 implies the statement of Theorem 8.75.
2
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8.7 Exact sequences. Corollaries: calculations; existence of
global defining functions

Definition 8.80 Let A and B be sheaves over the same base D with projec-
tions πA and πB respectively. A homomorphism h : A→ B is a continuous
mapping of the total spaces of sheaves that commutes with the projection
and yields a group homomorphism hx : π−1

A (x) → π−1
B (x) of the projec-

tion preimages. If its inverse is a sheaf homomorphism, then it is called an
isomorphism.

Remark 8.81 Every sheaf homomorphism induces a homomorphism of the
groups of sections over every subset in the base.

Remark 8.82 Let h : A→ B be a sheaf homomorphism. Let πA : A→ D,
πB : B → D be sheaf projections. For every x ∈ D let Kx ⊂ π−1

A (x) denote
the kernel of the homomorphism hx. The union of the groups hx considered
as a subset in the total space of the sheaf A is a sheaf called the kernel sheaf
of the homomorphism h. (Exercise: prove this.)

Definition 8.83 An exact sequence of Abelian groups is a sequence of ho-
momorphisms

fj : Aj → Aj+1; A1 → A2 → A3 → . . .

such that fj+1 ◦ fj = 0 and Ker fj+1 = Imfj . A short exact sequence is an
exact sequence of the type

0→ A→ B → C → 0; f : A→ B, g : B → C. (8.31)

Its shortness is equivalent to the conditions saying that

f is injective, g is surjective, Imf = Ker g, C ' B/ImA.

A (short) exact sequence of sheaves of Abelian groups is defined analogously.

In what follows we consider short exact sequences (8.31) of Abelian group
complexes

0→ A1 → A2 → . . . ; 0→ B1 → B2 → . . . ; 0→ C1 → C2 → . . . .

The corresponding differentials δ : Aj → Aj+1 will be denoted by the same
symbol δ. The short exact sequences 0 → Ak → Bk → Ck → 0 should
commute with the differentials.
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   k         k          k

0        A        B        C       0

0        A        B        C       0

0        A        B        C       0

 
       k−1     k−1      k−1

   

     k+1    k+1    k+1

 δ       δ       δ 

 δ       δ       δ

 δ       δ       δ 

 δ       δ       δ

Figure 5: A short exact sequence of Abelian group complexes.

Theorem 8.84 Every short exact sequence of Abelian group complexes in-
duces a long exact sequence in the cohomology:

0→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ H1(C)→ H2(A)→ . . . ,
(8.32)

where the homomorphisms Hk(A) → Hk(B), Hk(B) → Hk(C) are the
homomorphisms f∗, g∗ induced by the short sequence homomorphisms f :
Ak → Bk, g : Bk → Ck.

Addendum. The homomorphisms δ∗ : Hk(C) → Hk+1(A) from the
above sequence are defined as follows. Let c ∈ Ck be a cocycle. Fix its
preimage b ∈ g−1(c). Then g(δ(b)) = δc = 0, by commutativity of the
diagram. Therefore, δ(b) ∈ f(Ak+1), by exactness. That is, there exists
an a ∈ Ak+1 such that f(a) = δb. The correspondence c 7→ a induces a
homomorphism δ∗ : Hk(C)→ Hk+1(A) that forms an exact sequence (8.32)
together with f∗ and g∗.

The verification of well-definedness of the above homomorphism δ∗ and
exactness of the sequence (8.32) is straightforward: everything follows from
the commutative diagram in the figure and the exactness of its horizontal
lines. Here we will check only the well-definedness of δ∗.

Claim 1. For every c ∈ Ck with δc = 0 the corresponding a ∈ Ak+1 is
a cocycle well-defined up to a coboundary.
Proof One has f(δa) = δ(δb) = 0, by commutativity. Hence, δa = 0, by
the injectivity of the homomorphism f . The element b is well-defined up to
addition of an element q = Ker g = Imf . One has q = f(α) for a certain
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α ∈ Ak. This together with commutativity implies that δq = f(δα). Hence,
the cocycle a is uniquely defined up to addition of a coboundary δα. 2

Claim 2. The cohomology class [a] depends only on the cohomology
class [c].
Proof It suffices to show that a is a coboundary, whenever c is a cobound-
ary. Let c = δγ. Choose a β ∈ g−1(γ), set b = δγ: g(b) = c. One has δb = 0.
Hence, the construction from the addendum yields a = 0. 2

Corollary 8.85 Every short exact sequence

0→ A→ B → C → 0

of sheaves of Abelian groups over the same base induces a long exact sequence
of the cohomology groups

0→ H0(D,A)→ H0(D,B)→ H0(D,C)→ H1(D,A)→ H1(D,B)→ H1(D,C)→ H2(D,A)→ . . .
(8.33)

The corollary is a direct application of the above theorem to the corre-
sponding Čech complexes for every covering.

Example 8.86 Let M be a complex manifold. Consider the sheaves Z, O,
O∗ of respectively locally-constant integer-valued, holomorphic and holo-
morphic non-vanishing functions. One has a natural short exact sequence

0→ Z→ O → O∗ → 0, (8.34)

where the homomorphism Z → O is the natural inclusion, and O → O∗
sends a holomorphic function h(z) to its exponent eh(z). In the case, when
M = ∆ is a polydisk, one has Hk(∆,Z) = 0 for k > 0, by Theorem 8.75 and
contractibility of the polydisk (which implies triviality of its singular coho-
mology). Thus, the corresponding long exact cohomology sequence takes
the form

· · · → 0→ Hk(∆,O)→ Hk(∆,O∗)→ 0→ . . . , k ≥ 1.

This implies that

Hk(∆,O) ' Hk(∆,O∗) for every k ≥ 1. (8.35)

On the other hand, one has

H1(∆,O) = 0,
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by Cousin Theorem 8.50. This implies that

H1(∆,O∗) = 0. (8.36)

Corollary 8.87 Each multiplicative holomorphic Cousin Problem on a poly-
disk can be solved after passing to a smaller covering.

Proof Let U be a covering of a polydisk ∆, h = (hij) be a holomorphic
multiplicative cocycle with respect to the covering U . It represents a coho-
mology class [h]U ∈ H1

U (∆,O∗). Its projection [h] ∈ H1(∆,O∗) vanishes,
by (8.36). Therefore, there exists a smaller covering V < U such that the
restriction ρφh of the cocycle h to the intersections of the elements of the cov-
ering V is a coboundary: it represents zero cohomology class in H1

V(∆,O∗).
Hence, the corresponding Multiplicative Cousin problem can be solved for
the covering V, see Example 8.69. The corollary is proved. 2

Corollary 8.88 Every holomorphic hypersurface A in a polydisk ∆ has a
global defining holomorphic function: there exists a holomorphic function
f : ∆ → C such that A = {f = 0} and for every x ∈ A the function f
generates the ideal IA(x).

Proof Let U be a covering of the polydisk ∆ by open sets Uj with holomor-
phic functions fj : Uj → C such that for every j one has A ∩ Uj = {fj = 0}
and fj generates the ideal IA(x) for every x ∈ A∩Uj : these Uj and fj were

constructed just after Corollary 8.41. Set hij =
fj
fi

whenever Ui ∩ Uj 6= ∅.
Let V < U be a smaller covering by open sets Vα for which the correspond-
ing restriction of the cocycle h is trivial in the cohomology H1

V(∆,O∗). The
restricted cocycle is given by the same formula

(ρφh)αβ =
fφ(β)

fφ(α)
.

Let (gα) be its trivialization:

gα : Vα → C∗ are holomorphic functions,
gβ
gα

= hαβ on Vα ∩ Vβ.

Then for every two intersected sets Vα and Vβ one has

fφ(β)

gβ
=
fφ(α)

gα
on Vα ∩ Vβ.

Thus, the latter ratios are restrictions to Vα of a global holomorphic function
f : ∆→ C, which has the required properties by construction. The corollary
is proved. 2
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Corollary 8.89 Each holomorphic function on a hypersurface A in a poly-
disk ∆ is the restriction to A of a global holomorphic function on ∆.

Proof We have proved the statement of the corollary under the condition
of the existence of global defining function (Theorem 8.54). But we have
just proved that a global defining function always exists. This proves the
corollary. 2

Let M be a complex manifold, Ep,q be the sheaf of (germs of) C∞-smooth
(p, q)-forms on M , E0 be the sheaf of C∞-smooth functions. The sheaf
∂̄Ep,q−1 is the subsheaf in Ep,q that is the image of the sheaf Ep,q−1 under
the antiholomorphic differential ∂̄ (which is a sheaf homomorphism). This is
the sheaf of locally ∂̄-exact (p, q)-forms. Equivalently, this is the sheaf of ∂̄-
closed (p, q)-forms, since the notions of ∂̄-exactness and ∂̄-closedness coincide
locally: each point of the manifold has a neighborhood U biholomorphically
equivalent to a polydisk; each ∂̄-closed (p, q)-form on U is ∂̄-exact by the
∂̄-Poincaré Lemma. Let Ωp denote the sheaf of holomorphic (p, 0)-forms,
Ω0 = O. One has the following exact sequences:

0→ O → E0 → ∂̄E0 → 0, (8.37)

0→ Ωp → Ep,0 → ∂̄Ep,0 → 0 (8.38)

0→ ∂̄Ep,q−1 → Ep,q → ∂̄Ep,q → 0. (8.39)

The left homomorphisms are the natural inclusions. The right ones are the
∂̄-operators.

Theorem 8.90 For every complex manifold M one has

Hk(M, Ep,q) = 0 for all k ≥ 1, p, q, (8.40)

H0,1(M) = H1(M,O), Hp,q(M) = Hq(M,Ωp) for every q ≥ 1, p ≥ 0.
(8.41)

Proof Statement (8.40) is proved analogously to the proof of Theorem 8.48
(cf. Task 5, part 2, Problem 3). The first equality in (8.41) is a particular
case of the second one; thus it suffices to prove the second one. The long
exact cohomology sequence corresponding to (8.38) together with vanishing
of the middle cohomology Hk(M, Ep,0) for k ≥ 1 yields

0→ Hk(M, ∂̄Ep,0)→ Hk+1(M,Ωp)→ 0.
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Therefore,

Hk(M, ∂̄Ep,0) = Hk+1(M,Ωp) for every k ≥ 1.

Similarly, the exact cohomology sequence corresponding to (8.39) yields

Hk(M, ∂̄Ep,q) = Hk+1(M, ∂̄Ep,q−1) for every k, q ≥ 1.

The two last statements together imply that

Hq(M,Ωp) = H1(M, ∂̄Ep,q−2) for every q ≥ 2. (8.42)

On the other hand, the initial part of the cohomology sequence associated
to (8.39) yields

H0(M, Ep,q−1)→ H0(M, ∂̄Ep,q−1)→ H1(M, ∂̄Ep,q−2)→ 0.

Therefore, the third term of the latter sequence is isomorphic to the quotient
of the middle term over the image of the first term. This is exactly the
quotient of the space of global ∂̄-closed (p, q)-forms over the space of global
∂̄-exact (p, q)-forms, the Dolbeault cohomology group Hp,q(M):

Hp,q(M) = H1(M, ∂̄Ep,q−2).

Substituting the latter equality to (8.42) yields (8.41). The theorem is
proved. 2

Corollary 8.91 One has

Hq(M,Ωp) = 0 whenever Hp,q(M) = 0. (8.43)

Remark 8.92 Cousin Theorem 8.50 and its proof imply that if H0,1(M) =
0, then every holomorphic Additive Cousin Problem can be solved. In fact,
the above proof of Theorem 8.90 is just a sheaf-theoretic translation of the
proof of Theorem 8.50.

Remark 8.93 Applying the arguments from the proof of Theorem 8.90 to
a real manifold and the usual d-differential d : Ek → Ek+1 acting on the
space of differential k-forms and to the short exact sequence

0→ dEk−1 → Ek → dEk → 0

yields a short proof of de Rham Theorem. See Task 5, part 2, Problem 2.
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8.8 Coherent analytic sheaves, Stein manifolds and Cartan
Theorems A, B

Let M be a complex manifold. In the present subsection we will deal with
the sheaves of O-modules over M .

Definition 8.94 A sheaf of O-modules is a sheaf J of Abelian groups over
M such that each fiber Jx = π−1(x) is equipped with the multiplication by
elements of the sheaf O, germs of holomorphic functions at x, so that the
multiplication is continuous on the product of J ×O of the sheaf spaces. A
sheaf J of O-modules is called coherent, if every x ∈M has a neighborhood
U = U(x) ⊂M with the following properties:

1) the sheaf J |U is finitely generated over O by sections: there exist an
m = m(U) ∈ N and an epimorphic homomorphism g : Om|U → J |U ;

2) the kernel Ker g is finitely generated: there exist a k = k(U,m) ∈ N
and an epimorphic homomorphism f : Ok|U → Ker g|U : thus we have the
exact sequence

Ok|U → Om|U → J |U → 0.

Example 8.95 The following are sheaves of O-modules:
- the sheaf Om of m-dimensional holomorphic vector functions;
- the sheaf of holomorphic sections of a holomorphic vector bundle (which

is locally free: locally isomorphic to the sheaf Om, where m is the dimension
of the bundle);

- the sheaf J (A) of holomorphic functions on M vanishing on an analytic
subset A ⊂M ;

- the sheaf OA of holomorphic functions on an analytic set A, see Defini-
tion 8.53. We extend it as a sheaf over the base M by putting OA|M\A = 0.

All of them are coherent analytic sheaves. Indeed, there is an obvious
exact sequence

0→ Om → Om → 0

with identity isomorphism in the middle. Hence, the sheaf Om is coherent.
The sheaf J (A) is finitely generated, as a local ideal IA(x) of every germ
of analytic set. That is, each x ∈ M has a neighborhood U for which
there exist m ∈ N and an epimorphic homomorphism g : Om → J . Let
g1, . . . , gm ∈ Γ(J |U ) denote the images of the basic constant unit vector
functions (0 . . . 010 . . . ). One has

Ker g = {(h1, . . . , hn) | hj are holomorphic and
∑
j

hjgj = 0.
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It appears that the latter kernel is also finitely generated, while restricted
to a small neighborhood of the point x.

Remark 8.96 It is known that if

0→ A→ B → C → 0

is a short exact sequence of sheaves of O-modules and at least two of the
sheaves A, B, C are coherent, then the third sheaf is also coherent.

Theorem 8.97 (Cartan’s Theorem A). For every coherent analytic sheaf
J on a Stein manifold M and every x ∈M the space of sections H0(M,J )
generates Jx = π−1(x) as an O-module.

Theorem 8.98 (Cartan’s Theorem B). For every coherent analytic sheaf
J on a Stein manifold M one has Hq(M,J ) = 0 for all q ≥ 1.

Corollary 8.99 For every Stein manifold M one has

Hq(M,O) = 0, Hq(M,O∗) = Hq+1(M,Z) whenever q ≥ 1.

In particular, H1(M,O∗) = 0, whenever H2(M,Z) = 0.

Proof The first equality follows from Cartan’s Theorem B and coherence
of the sheaf O. The second equality follows from the first one and the exact
cohomological sequence associated to the short sequence (8.34). 2

Theorem 8.100 Let M be a Stein manifold, A ⊂M be an analytic subset.
Then there exists a (may be infinite) family of global holomorphic functions
fi : M → C, i ∈ I, such that

A = {fi = 0 | i ∈ I}.

Every holomorphic function on A is the restriction to A of a global holo-
morphic function on M .

Proof The first statement of the theorem is equivalent to the statement
saying that for every x ∈M there exists a holomorphic function f : M → C
vanishing on A that does not vanish at x. To prove this, consider the sheaf
J (A) of functions vanishing on A. For every x /∈ A the O-module Jx is
generated by global sections M → J (A): global holomorphic functions on
M vanishing on A. In particular, the germ at x of constant function f ≡ 1
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is a finite linear combination
∑

j gjfj , where fj : M → C are holomorphic
functions vanishing on A, gj are germs at x of holomorphic functions. In
particular, fj(x) 6= 0 for some j. This proves the first statement of the
theorem.

Let us prove the second statement of the theorem. One has the short
exact sequence

0→ J (A)→ O → OA → 0.

The corresponding long exact cohomological sequence contains the part

H0(M,O)→ H0(M,OA)→ H1(M,J (A)).

The left mapping is given by the restriction of the functions to A. The sheaf
J (A) being coherent, one has H1(M,J (A)) = 0, by Cartan’s Theorem
B. This implies that the restriction mapping H0(M,O) → H0(M,OA) is
surjective, which is exactly the second statement of the theorem. 2

Theorem 8.101 Let M be a Stein manifold, and let U ⊂ M be an H(U)-
convex domain. Then every holomorphic function f : U → C is a limit of
a sequence of holomorphic functions fk : M → C converging to f uniformly
on compact subsets in U .
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