2. Homomorphisms.

Def 2.1 Let G and H be groups. Homomorphism is a mapping $f: G \rightarrow H$ such that $\forall a, b \in G$ $f(a \cdot b)=f(a) \cdot f(b)$.
The kernel of the homomorphism f is $\operatorname{Ker} f=\{g \in G$ such that $f(g)=\varepsilon\} \subset G$.
The image of the homomorphism f is $\operatorname{Im} f=\{h \in H$ such that $h=f(g)$ for some $g \in G\} \subset H$.
$\diamond 2.1$ Let $f: G \rightarrow H$ be a homomorphism. Prove that
a) $f(\varepsilon)=\varepsilon$;
b) $\forall a \in G \quad f\left(a^{-1}\right)=f(a)^{-1}$;
c) $\forall a \in G \operatorname{ord}(f(a)) \mid \operatorname{ord}(a)$.
$\diamond 2.2$ Let $f: G \rightarrow H$ be a homomorphism. Prove that
a) $\operatorname{Ker} f$ is a subgroup in G; \quad b) $\operatorname{Im} f$ is a subgroup in H;
c) Can any given subgroup of G be a kernel of some homomorphism?
d) Can any given subgroup of H be an image of some homomorphism?
$\diamond 2.3$ Let $f: G \rightarrow H$ be a homomorphism. Prove that
a) f is injective $\Leftrightarrow \operatorname{Ker} f=\{\varepsilon\}$;
b) f is surjective $\Leftrightarrow \operatorname{Im} f=H$;
c) f is isomorphism $\Leftrightarrow \operatorname{Ker} f=\{\varepsilon\}$ and $\operatorname{Im} f=H$.
$\diamond \mathbf{2 . 4}$ Verify that the following mappings are homomorphisms. Find $\operatorname{Ker} f$ and $\operatorname{Im} f$.
a) $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ where $f(x)=x^{2}$;
b) $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ where $f(x)=x^{3}$;
c) $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ where $f(x)=|x|$;
d) $f: \mathbb{C}^{*} \rightarrow \mathbb{R}^{*}$ where $f(x)=|x|$;
e) $f: \mathbb{R} \rightarrow \mathbb{C}^{*}$ where $f(x)=\cos x+i \sin x$; \quad f) $f: \mathbb{C} \rightarrow \mathbb{C}^{*}$ where $f(x)=e^{x}$;
g) $f: \mathbb{Z} \rightarrow \mathbb{C}^{*}$ where $f(x)=(1+i)^{x} ; \quad$ h) $f: \mathbb{Z} \rightarrow \mathbb{C}^{*}$ where $f(x)=\left(\frac{1+i}{\sqrt{2}}\right)^{x}$.
\diamond 2.5 Let G be an abelian group, $m \in \mathbb{N}$. Then the mapping $f: G \rightarrow G, f(x)=x^{m}$ is a homomorphism. Is the same statement true for non-abelian G ?
\diamond 2.6 Classify homomorphisms: a) $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$;
b) $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}$;
c) $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$;
d) $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$.
$\diamond 2.7$ a) Let G be a group. We know that $\mathcal{S}(G)=\{$ bijections $\varphi: G \rightarrow G\}$ forms a group under composition. Prove the Cayley's theorem: the mapping $f: G \rightarrow \mathcal{S}(G)$ defined by the formula $f(a)(x)=a x$ is an injective homomorphism.
b) Prove that the image of the Cayley homomorphism for $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is the Klein 4-group in \mathcal{S}_{4}.
$\diamond 2.8$ a) Consider a regular hexagon. Let us enumerate it's vertices. Then any isomerty from D_{6} defines a permutation in \mathcal{S}_{6}. Prove that this construction defines a homomorphism $f: D_{6} \rightarrow \mathcal{S}_{6}$. Find $\operatorname{Ker} f$ and $\operatorname{Im} f$. b) Let us now enumerate three major diagonals of the hexagon. Prove that we get a homomorphism $f: D_{6} \rightarrow \mathcal{S}_{3}$ and find $\operatorname{Ker} f$ and $\operatorname{Im} f$.
c) Next let us enumerate four major diagonals of the octagon. Prove that we get a homomorphism $f: D_{8} \rightarrow \mathcal{S}_{4}$ and find $\operatorname{Ker} f$ and $\operatorname{Im} f$.

Def 2.2 An isomorphism $f: G \rightarrow G$ is called an automorphism of the group G.
$\diamond 2.9$ Prove that the set of all automorphisms of a given group G is a subgroup of $\mathcal{S}(G)$. This subgroup is denoted by Aut G.
$\diamond \mathbf{2 . 1 0}$ a)-i) Find $\operatorname{Aut} \mathbb{Z}_{n}$ for $n=2,3, \ldots, 9,10$. j) Prove that \mid Aut $\mathbb{Z}_{n} \mid=\varphi(n)$.
${ }^{*} \mathrm{k}$) Prove that for prime p the group Aut \mathbb{Z}_{p} is cyclic.
$\diamond 2.11$ Prove that $\operatorname{Aut}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \cong \mathcal{S}_{3}$.
\diamond 2.12 Consider a regular polytope in the Euclidean 3-space (tetrahedron, cube, octahedron, dodecahedron or icosahedron). For each of them consider the group G of all orientation preserving isometries of the 3 -space preserving the given polytope. Find $|G|$ and the orders of all elements of G. Enumerating vertices, edges or faces of the polytope construct homomorphisms from G to permutation groups. For each polytope suggest the best version of enumeration to determine the structure of G.

3. The Lagrange theorem.

Def 3.3 Let H be a subgroup of $G, g \in G$. Left coset is the set $g H=\{g h, \quad h \in H\}$; right coset is the set $H g=\{h g, \quad h \in H\}$.
\diamond 3.13 Let H be a subgroup of $G, a, b \in G$. Then either $a h=b H$, or $a H \cap b H=\emptyset$.
$\diamond 3.14$ Prove the Lagrange theorem: If G is finite group and H is a subgroup of G then the order of H is the divisor of the order of G.
$\diamond 3.15$ a) If $|G|<\infty, a \in G$, then $\operatorname{ord}(a)$ is the divisor of the order of G.
b) $a^{|G|}=e$.
$\diamond 3.16$ a) Prove that if $a, p \in \mathbb{Z}, p-\operatorname{prime},(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$ (The "Little" Fermat theorem).
b) Prove that if $a, n \in \mathbb{Z},(a, n)=1$, then $a^{\varphi(n)} \equiv 1(\bmod p)$, where $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|=|\{k \in \mathbb{Z}, \quad 0<k<n, \quad(k, n)=1\}|$ - the Euler function.
\diamond 3.17 Prove that if $|G|=p$ and p is prime then $G \cong \mathbb{Z}_{p}$.
\diamond 3.18 Classify groups of order 4 (up to an isomorphism).
\diamond 3.19 Find all non-cyclic subgroups of
a) D_{4};
b) Q_{8};
c) D_{6};
*) \mathcal{S}_{4}.

Def 3.4 Left quotient set $=\{$ the set of all left cosets $\}=G / H$.
Right quotient set $=\{$ the set of all right cosets $\}=H \backslash G$.
(So for $|G|<\infty \quad|G / H|=|H \backslash G|=\frac{|G|}{|H|} \cdot$.)
Def 3.5 If the quotient set G / H is finite, the integer $|G / H|$ is called the index of the subgroup H (and H is called a finite index subgroup).
$\diamond 3.20$ Prove the relative version of the Lagrange theorem: if $G \supset H \supset K-$ subgroups of finite index, then $|G / K|=|G / H| \cdot|H / K|$.
\diamond 3.21 Give an example of a group G and it's subgroup H such that $g H \neq H g$ for some $g \in G$.
Def 3.6 A subgroup H of a group G is called normal subgroup if if $g H=H g \forall g \in G$. (This is usually denoted as $H \triangleleft G)$.
\diamond 3.22 Prove that $H \triangleleft G \Leftrightarrow \forall g \in G \forall h \in H g h g^{-1} \in H$.
\diamond 3.23 Prove that $(G: H)=2 \Rightarrow H \triangleleft G$.
\diamond 3.24 Prove that a kernel of a homomorphism is normal subgroup.
\diamond 3.25 Center of a group G is the set $Z(G)=\{a \in G$ such that $a g=g a \forall g \in G\}$.
a) Prove that $Z(G)$ is a normal subgroup in G.
b) Find $Z\left(Q_{8}\right)$.
b) Find $Z\left(\mathcal{S}_{3}\right)$.
c) Find $Z\left(\mathcal{S}_{4}\right)$.
d) Find $Z\left(D_{n}\right)$. (The answer depends on n.)
\diamond 3.26 Find all normal subgroups of
a) Q_{8};
b) D_{4};
b) D_{6};
c) \mathcal{S}_{3};
d) \mathcal{S}_{4}.
$\diamond 3.27$ a) Fix an element $a \in G$. Prove that the mapping $\varphi_{a}: G \rightarrow G$ defined by $\varphi_{a}(g)=a^{-1} g a$ is an automorphism of the group G. Such φ_{a} is called an internal automorphism of G.
b) Prove that the set of all internal automorphisms $\operatorname{Int} G$ of the group G is a normal subgroup of Aut G.
$\diamond 3.28$ Find $\operatorname{Int} G$ and $\operatorname{Aut} G$ for
a) $G=\mathcal{S}_{3}$;
b)) $G=D_{4}$;
${ }^{*}$ c) $G=Q_{8}$.

