2. Homomorphisms.

Def 2.1 Let G and H be groups. Homomorphism is a mapping $f: G \to H$ such that $\forall a, b \in G$ $f(a \cdot b) = f(a) \cdot f(b).$

The kernel of the homomorphism f is Ker $f = \{g \in G \text{ such that } f(g) = \varepsilon\} \subset G$. The *image* of the homomorphism f is $\text{Im} f = \{h \in H \text{ such that } h = f(q) \text{ for some } q \in G\} \subset H$.

 \diamond **2.1** Let $f: G \to H$ be a homomorphism. Prove that a) $f(\varepsilon) = \varepsilon$; b) $\forall a \in G \ f(a^{-1}) = f(a)^{-1}$; c) $\forall a \in G \ \operatorname{ord}(f(a)) \mid \operatorname{ord}(a)$.

 $\diamond 2.2$ Let $f: G \to H$ be a homomorphism. Prove that

a) Ker f is a subgroup in G; b) Im f is a subgroup in H;

c) Can any given subgroup of G be a kernel of some homomorphism?

d) Can any given subgroup of H be an image of some homomorphism?

 $\diamond 2.3$ Let $f: G \to H$ be a homomorphism. Prove that a) f is injective \Leftrightarrow Ker $f = \{\varepsilon\}$; b) f is surjective \Leftrightarrow Im f = H; c) f is isomorphism \Leftrightarrow Ker $f = \{\varepsilon\}$ and Im f = H.

 \diamond 2.4 Verify that the following mappings are homomorphisms. Find Ker f and Im f.

a) $f : \mathbb{R}^* \to \mathbb{R}^*$ where $f(x) = x^2$; b) $f : \mathbb{R}^* \to \mathbb{R}^*$ where $f(x) = x^3$; c) $f : \mathbb{R}^* \to \mathbb{R}^*$ where f(x) = |x|; d) $f : \mathbb{C}^* \to \mathbb{R}^*$ where f(x) = |x|;

e) $f : \mathbb{R} \to \mathbb{C}^*$ where $f(x) = \cos x + i \sin x$; f) $f : \mathbb{C} \to \mathbb{C}^*$ where $f(x) = e^x$;

g) $f: \mathbb{Z} \to \mathbb{C}^*$ where $f(x) = (1+i)^x$; h) $f: \mathbb{Z} \to \mathbb{C}^*$ where $f(x) = (\frac{1+i}{\sqrt{2}})^x$.

 \diamond 2.5 Let G be an abelian group, $m \in \mathbb{N}$. Then the mapping $f: G \to G, f(x) = x^m$ is a homomorphism. Is the same statement true for non-abelian G?

♦ **2.6** Classify homomorphisms: a) $f : \mathbb{Z} \to \mathbb{Z}_n$; b) $f : \mathbb{Z}_n \to \mathbb{Z}$; c) $f : \mathbb{Z}_n \to \mathbb{Z}_n$; d) $f : \mathbb{Z}_m \to \mathbb{Z}_n$.

 \diamond 2.7 a) Let G be a group. We know that $\mathcal{S}(G) = \{ \text{ bijections } \varphi : G \to G \}$ forms a group under composition. Prove the Cayley's theorem: the mapping $f: G \to \mathcal{S}(G)$ defined by the formula f(a)(x) = ax is an injective homomorphism.

b) Prove that the image of the Cayley homomorphism for $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ is the Klein 4-group in \mathcal{S}_4 .

 \diamond 2.8 a) Consider a regular hexagon. Let us enumerate it's vertices. Then any isomerty from D_6 defines a permutation in \mathcal{S}_6 . Prove that this construction defines a homomorphism $f: D_6 \to \mathcal{S}_6$. Find Ker f and Im f. b) Let us now enumerate three major diagonals of the hexagon. Prove that we get a homomorphism $f: D_6 \to S_3$ and find $\operatorname{Ker} f$ and $\operatorname{Im} f$.

c) Next let us enumerate four major diagonals of the octagon. Prove that we get a homomorphism $f: D_8 \to S_4$ and find Ker f and Im f.

Def 2.2 An isomorphism $f: G \to G$ is called an *automorphism* of the group G.

 \diamond 2.9 Prove that the set of all automorphisms of a given group G is a subgroup of $\mathcal{S}(G)$. This subgroup is denoted by $\operatorname{Aut} G$.

♦ 2.10 a)-i) Find Aut \mathbb{Z}_n for n = 2, 3, ..., 9, 10. j) Prove that $|\operatorname{Aut} \mathbb{Z}_n| = \varphi(n)$. *k) Prove that for prime p the group Aut \mathbb{Z}_p is cyclic.

 \diamond **2.11** Prove that Aut $(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong \mathcal{S}_3$.

 \diamond 2.12 Consider a regular polytope in the Euclidean 3-space (tetrahedron, cube, octahedron, dodecahedron) or icosahedron). For each of them consider the group G of all orientation preserving isometries of the 3-space preserving the given polytope. Find |G| and the orders of all elements of G. Enumerating vertices, edges or faces of the polytope construct homomorphisms from G to permutation groups. For each polytope suggest the best version of enumeration to determine the structure of G.

3. The Lagrange theorem.

Def 3.3 Let *H* be a subgroup of *G*, $g \in G$. Left coset is the set $gH = \{gh, h \in H\}$; right coset is the set $Hg = \{hg, h \in H\}$.

♦ **3.13** Let *H* be a subgroup of *G*, $a, b \in G$. Then either ah = bH, or $aH \cap bH = \emptyset$.

 \diamond **3.14** Prove the *Lagrange theorem:* If G is finite group and H is a subgroup of G then the order of H is the divisor of the order of G.

♦ 3.15 a) If $|G| < \infty$, $a \in G$, then ord(a) is the divisor of the order of G. b) $a^{|G|} = e$.

 \diamond 3.16 a) Prove that if $a, p \in \mathbb{Z}$, p — prime, (a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$ (The "Little" Fermat theorem). b) Prove that if $a, n \in \mathbb{Z}$, (a, n) = 1, then $a^{\varphi(n)} \equiv 1 \pmod{p}$, where $\varphi(n) = |\mathbb{Z}_n^*| = |\{k \in \mathbb{Z}, 0 < k < n, (k, n) = 1\}|$ — the Euler function.

 \diamond 3.17 Prove that if |G| = p and p is prime then $G \cong \mathbb{Z}_p$.

 \diamond **3.18** Classify groups of order 4 (up to an isomorphism).

 \diamond **3.19** Find all non-cyclic subgroups of a) D_4 ; b) Q_8 ; c) D_6 ; *d) S_4 .

Def 3.4 Left quotient set = { the set of all left cosets } = G/H. Right quotient set = { the set of all right cosets } = $H \setminus G$. (So for $|G| < \infty$ $|G/H| = |H \setminus G| = \frac{|G|}{|H|}$.)

Def 3.5 If the quotient set G/H is finite, the integer |G/H| is called the *index* of the subgroup H (and H is called a *finite index subgroup*).

 \diamond **3.20** Prove the relative version of the Lagrange theorem: if *G* ⊃ *H* ⊃ *K* — subgroups of finite index, then $|G/K| = |G/H| \cdot |H/K|$.

♦ 3.21 Give an example of a group G and it's subgroup H such that $gH \neq Hg$ for some $g \in G$.

Def 3.6 A subgroup H of a group G is called *normal subgroup* if if $gH = Hg \forall g \in G$. (This is usually denoted as $H \lhd G$).

♦ **3.22** Prove that $H \triangleleft G \Leftrightarrow \forall g \in G \forall h \in H \ ghg^{-1} \in H$.

♦ **3.23** Prove that $(G:H) = 2 \Rightarrow H \lhd G$.

 $\diamond~3.24~$ Prove that a kernel of a homomorphism is normal subgroup.

♦ **3.25** Center of a group G is the set $Z(G) = \{ a \in G \text{ such that } ag = ga \forall g \in G \}.$

a) Prove that Z(G) is a normal subgroup in G.

b) Find $Z(Q_8)$. b) Find $Z(S_3)$. c) Find $Z(S_4)$. d) Find $Z(D_n)$. (The answer depends on n.)

◇ 3.26 Find all normal subgroups of
a) Q₈;
b) D₄;
b) D₆;
c) S₃;
d) S₄.

 \diamond 3.27 a) Fix an element $a \in G$. Prove that the mapping $\varphi_a : G \to G$ defined by $\varphi_a(g) = a^{-1}ga$ is an automorphism of the group G. Such φ_a is called an *internal automorphism* of G.

b) Prove that the set of all internal automorphisms $\operatorname{Int} G$ of the group G is a normal subgroup of $\operatorname{Aut} G$.

◇ 3.28 Find Int G and Aut G for
a) G = S₃;
b)) G = D₄; *c) G = Q₈.