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2. Homomorphisms.

Def 2.1 Let G and H be groups. Homomorphism is a mapping f : G→ H such that ∀a; b ∈ G
f(a · b) = f(a) · f(b).
The kernel of the homomorphism f is Ker f = {g ∈ G such that f(g) = "} ⊂ G.
The image of the homomorphism f is Im f = {h ∈ H such that h = f(g) for some g ∈ G} ⊂ H.

¦ 2.1 Let f : G→ H be a homomorphism. Prove that
a) f(") = "; b) ∀a ∈ G f(a−1) = f(a)−1; c) ∀a ∈ G ord(f(a)) | ord(a).

¦ 2.2 Let f : G→ H be a homomorphism. Prove that
a) Ker f is a subgroup in G; b) Im f is a subgroup in H;
c) Can any given subgroup of G be a kernel of some homomorphism?
d) Can any given subgroup of H be an image of some homomorphism?

¦ 2.3 Let f : G→ H be a homomorphism. Prove that
a) f is injective ⇔ Ker f = {"}; b) f is surjective ⇔ Im f = H;
c) f is isomorphism ⇔ Ker f = {"} and Im f = H.

¦ 2.4 Verify that the following mappings are homomorphisms. Find Ker f and Im f .
a) f : R∗ → R∗ where f(x) = x2; b) f : R∗ → R∗ where f(x) = x3;
c) f : R∗ → R∗ where f(x) = |x|; d) f : C∗ → R∗ where f(x) = |x|;
e) f : R→ C∗ where f(x) = cos x+ i sinx; f) f : C→ C∗ where f(x) = ex;
g) f : Z→ C∗ where f(x) = (1 + i)x; h) f : Z→ C∗ where f(x) = (1+i√

2 )x.

¦ 2.5 Let G be an abelian group, m ∈ N. Then the mapping f : G → G, f(x) = xm is a homomorphism. Is
the same statement true for non-abelian G?

¦ 2.6 Classify homomorphisms: a) f : Z→ Zn; b) f : Zn → Z; c) f : Zn → Zn; d) f : Zm → Zn.

¦ 2.7 a) Let G be a group. We know that S(G) = { bijections ' : G→ G} forms a group under composition.
Prove the Cayley's theorem: the mapping f : G → S(G) de�ned by the formula f(a)(x) = ax is an injective
homomorphism.
b) Prove that the image of the Cayley homomorphism for G = Z2 × Z2 is the Klein 4-group in S4.

¦ 2.8 a) Consider a regular hexagon. Let us enumerate it's vertices. Then any isomerty from D6 de�nes a
permutation in S6. Prove that this construction de�nes a homomorphism f : D6 → S6. Find Ker f and Im f .
b) Let us now enumerate three major diagonals of the hexagon. Prove that we get a homomorphism f : D6 → S3
and �nd Ker f and Im f .
c) Next let us enumerate four major diagonals of the octagon. Prove that we get a homomorphism f : D8 → S4
and �nd Ker f and Im f .

Def 2.2 An isomorphism f : G→ G is called an automorphism of the group G.

¦ 2.9 Prove that the set of all automorphisms of a given group G is a subgroup of S(G). This subgroup is
denoted by AutG.

¦ 2.10 a)-i) Find AutZn for n = 2; 3; : : : ; 9; 10. j) Prove that |AutZn| = '(n).
*k) Prove that for prime p the group AutZp is cyclic.

¦ 2.11 Prove that Aut(Z2 × Z2) ∼= S3.

¦ 2.12 Consider a regular polytope in the Euclidean 3-space (tetrahedron, cube, octahedron, dodecahedron
or icosahedron). For each of them consider the group G of all orientation preserving isometries of the 3-space
preserving the given polytope. Find |G| and the orders of all elements of G. Enumerating vertices, edges or
faces of the polytope construct homomorphisms from G to permutation groups. For each polytope suggest the
best version of enumeration to determine the structure of G.
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3. The Lagrange theorem.

Def 3.3 Let H be a subgroup of G, g ∈ G. Left coset is the set gH = {gh; h ∈ H}; right coset is the set
Hg = {hg; h ∈ H}.
¦ 3.13 Let H be a subgroup of G, a; b ∈ G. Then either ah = bH, or aH ∩ bH = ∅.
¦ 3.14 Prove the Lagrange theorem: If G is �nite group and H is a subgroup of G then the order of H is the
divisor of the order of G.

¦ 3.15 a) If |G| <∞, a ∈ G, then ord(a) is the divisor of the order of G.
b) a|G| = e.

¦ 3.16 a) Prove that if a; p ∈ Z, p | prime, (a; p) = 1, then ap−1 ≡ 1 (mod p) (The "Little" Fermat theorem).
b) Prove that if a; n ∈ Z, (a; n) = 1, then a'(n) ≡ 1 (mod p),
where '(n) = |Z∗n| = |{k ∈ Z; 0 < k < n; (k; n) = 1}| | the Euler function.

¦ 3.17 Prove that if |G| = p and p is prime then G ∼= Zp.

¦ 3.18 Classify groups of order 4 (up to an isomorphism).

¦ 3.19 Find all non-cyclic subgroups of
a) D4; b) Q8; c) D6; *d) S4.

Def 3.4 Left quotient set = { the set of all left cosets } = G=H.
Right quotient set = { the set of all right cosets } = H\G.
(So for |G| <∞ |G=H| = |H\G| = |G|

|H| .)

Def 3.5 If the quotient set G=H is �nite, the integer |G=H| is called the index of the subgroup H (and H is
called a �nite index subgroup).

¦ 3.20 Prove the relative version of the Lagrange theorem: if G ⊃ H ⊃ K | subgroups of �nite index, then
|G=K| = |G=H| · |H=K|.
¦ 3.21 Give an example of a group G and it's subgroup H such that gH 6= Hg for some g ∈ G.

Def 3.6 A subgroup H of a group G is called normal subgroup if if gH = Hg ∀g ∈ G. (This is usually denoted
as H CG).

¦ 3.22 Prove that H CG ⇔ ∀g ∈ G ∀h ∈ H ghg−1 ∈ H.

¦ 3.23 Prove that (G : H) = 2 ⇒ H CG.

¦ 3.24 Prove that a kernel of a homomorphism is normal subgroup.

¦ 3.25 Center of a group G is the set Z(G) = { a ∈ G such that ag = ga ∀ g ∈ G }.
a) Prove that Z(G) is a normal subgroup in G.
b) Find Z(Q8). b) Find Z(S3). c) Find Z(S4). d) Find Z(Dn). (The answer depends on n.)

¦ 3.26 Find all normal subgroups of
a) Q8; b) D4; b) D6; c) S3; d) S4.

¦ 3.27 a) Fix an element a ∈ G. Prove that the mapping 'a : G → G de�ned by 'a(g) = a−1ga is an
automorphism of the group G. Such 'a is called an internal automorphism of G.
b) Prove that the set of all internal automorphisms IntG of the group G is a normal subgroup of AutG.

¦ 3.28 Find IntG and AutG for
a) G = S3; b) ) G = D4; *c) G = Q8.


