• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
ФКН
Контакты

Тиморин Владлен Анатольевич
декан

 

Артамкин Игорь Вадимович
заместитель декана

 

Кузнецова Вера Витальевна
заместитель декана

 

Фейгин Евгений Борисович
заместитель декана

 

Эстеров Александр Исаакович
заместитель декана

119048, Москва,
ул. Усачёва, 6
тел. (495) 624-26-16
тел. (495) 772-95-90 *12720
тел. (495) 772-95-90 *12726 (декан)
тел. (495) 772-95-90 *12721 (учебный офис)


e-mail: math@hse.ru

Учебный офис:
mathstudyoffice@hse.ru

Редакторы сайта факультета:
Вигулис Лолита Антоновна
Кузнецова Вера Витальевна

Семинары под руководством М.Э.Казаряна и С.К.Ландо. «Характеристические классы и теория пересечений»: Александр Дунайкин (продолжение)

Мероприятие завершено
Hurwitz numbers for real polynomials (after I.Itenberg and D.Zvonkine)
 - continued -

Hurwitz numbers count holomorphic mappings from complex curves to the complex projective line with fixed passports of branch points.

The passport of a branch point is a partition of the degree of a covering that counts the leaves of the covering glued together.
These numbers do not depend on the location of the branch points.  

Real Hurwitz numbers count mappings between complex curves with antiholomorphic involution and a complex projective line endowed with complex conjugation that are equivariant with respect to these structures.
Again, the passports of branch points are specified. All branch points are on the real line in the target.
Defined like this, the number of the coverings depends on the order of branch points. 

We present a way to assign signs to real polynomials and obtain a number independent of the order of the branchpoints.