• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 119048, Москва,
ул. Усачёва, 6

тел. (495) 916-89-05
тел. (495) 772-95-90 *12720
тел. (495) 772-95-90 *12726 (декан)
E-mail: math@hse.ru

Учебный офис:
mathstudyoffice@hse.ru
тел. (495) 624-26-16
тел. (495) 772-95-90 *12712

Руководство

Декан Тиморин Владлен Анатольевич

Заместитель декана по учебной работе Артамкин Игорь Вадимович

Заместитель декана Кузнецова Вера Витальевна

Заместитель декана по науке Фейгин Евгений Борисович

Курс "Введение в теорию инвариантов" : Иван Лосев (Университет Торонто, ВШЭ)

Мероприятие завершено

Теория инвариантов - это область алгебраической геометрии на стыке с теорией алгебраических групп и алгебр Ли и с теорией представлений

Основные задачи теории инвариантов - это описать орбиты заданного действия алгебраической группы на многообразии и, тесно связанная задача, описать алгебру инвариантных функций.
Подобные задачи, как было показано, в частности, Мамфордом, возникают при построении многообразий модулей различных алгебро-геометрических объектов, а сама теория инвариантов начала активно изучаться в 19 веке.

Цель этого курса - дать краткое введение в теорию инвариантов. Мы ограничимся, в основном, действием группы GLn на аффинных многообразиях. 
Мы обсудим классические результаты Гильберта и Мамфорда о строении алгебры инвариантов и описании замкнутых орбит.
Мы также докажем так называемую основную теорему инвариантов для GLn.

Пререквизиты :
Курс ориентирован на студентов 3 и 4 курсов и продвинутых второкурсников. Я ожидаю, что слушатели изучили аффинные алгебраические многообразия и базовые сведения об их морфизмах. Также нужно понимание полной приводимости представлений групп и полилинейной алгебры.
Знания о комплексных группах Ли и их представлениях приветствуются, но не являются необходимыми. Нужные сведения будут даны в лекциях.

Все лекции проводятся на факультете математики ВШЭ.

Почти окончательное расписание:
1) 11 декабря, вторник: 13.30-15.20, ауд. 427
2) 12 декабря, среда: 10.30-11.50, ауд. 109
3) 13 декабря, четверг: 15.30-16.50, ауд. 108
4) 14 декабря, пятница: 15.30-16.50, ауд. 427
5) 17 декабря, понедельник: 12.00-13.50, ауд. 326
6) 18 декабря, вторник: 13.30-15.20, ауд. 427
7) 20 декабря, четверг: 15.30-16.50, ауд. 108

Прочее: Слушателям будет предложен набор задач. Курс засчитывается в НМУ.