Квадратичные формы.

Задача 1. Пусть V — конечномерное векторное пространство над полем k, char $k \neq 2$. Напомним, что отображение $Q\colon V \to k$ — квадратичная форма, если $Q(av) = a^2Q(v)$ для всех $a \in k, v \in V$ и отображение $\phi(x,y) = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$ — билинейная форма.

- a°) Убедитесь, что это определение совпадает с привычным определением квадратичной формы. Переформулируйте в инвариантных терминах основные утверждения о квадратичных формах, доказанные в лекциях.
- b) Назовем метрическим морфизмом пар (V,Q) и (V',Q') такое линейное отображение $f\colon V\to V',$ что $Q'\circ f=Q.$ Пусть $v,w\in V$ такие два вектора, что $Q(v)=Q(w)\neq 0.$ Покажите, что существует метрический автоморфизм V, переводящий v в w.

Подсказка: рассмотрите отражение относительно некоторой гиперплоскости.

с) (Теорема Витта) Покажите, что, если (V,Q) и (V',Q') невырождены (т. е. Q и Q' невырождены) и изоморфны (т. е. существует метрический изоморфизм между ними), то любой инъективный метрический морфизм $s:U\to V'$ из подпространства $U\subset V$ продолжается до метрического изоморфизма V и V'.

Подсказка: рассмотрите сначала случай вырожденного U, показав, что s продолжается на гиперплоскость, содержащую U. Используя b), выведите общий случай из уже рассмотренных, раскладывая U s ортогональную прямую сумму подпространств.

Задача 2°. При каких p следующие формы представляют ноль над \mathbb{Q}_p :

a)
$$5x_1^2 - x_2^2 - 3x_2^2$$
; b) $x_1^2 + x_2^2 + 7x_3^2 + 5x_4^2$?

Задача 3°. Определите все p, для которых следующие формы эквивалентны над \mathbb{Q}_p :

- a) $3x_1^2 + 7x_2^2$ и $x_1^2 + 84x_2^2$;
- b) $x_1^2 3x_2^2 + 15x_3^2$ и $3x_1^2 5x_2^2 + 3x_3^2$;
- c) $x_1^2 5x_2^2 + 3x_3^2 7x_4^2$ и $x_1^2 x_2^2 + x_3^2 x_4^2$.

Задача 4°. Убедитесь, что символ Гильберта $(a,b)_2$ является невырожденной билинейной формой $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2 \times \mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2 \to \mathbb{Z}/2\mathbb{Z} = \{\pm 1\}$. Запишите матрицу этой формы в базисе 2,-1,5.

Задача 5. а) Пусть $n(x,y,z)=x^2yz+y^2zx+z^2xy+x^2y^2+y^2z^2+z^2x^2-x^4-y^4-z^4.$ Убедитесь, что $n(x,y,z)\equiv -1\mod 4$ для всякой примитивной точки $(x,y,z)\in\mathbb{Z}_2^3.$

b) Положим $f(x_1,\ldots,x_9)=n(x_1,x_2,x_3)+n(x_4,x_5,x_6)+n(x_7,x_8,x_9)$ и $F(x_1,\ldots,x_{18})=f(x_1,\ldots,x_9)+4f(x_{10},\ldots,x_{18})$. Покажите, что F не имеет нетривиального нуля в \mathbb{Q}_2 .

Это дает контрпример к гипотезе Артина о том, что всякий однородный многочлен степени d над \mathbb{Q}_p от d^2+1 и более переменных имеет нетривиальный ноль. Эта гипотеза верна для d=1,2,3 и для любого d и всех p, больших некоторой границы (зависящей от d).

Задача 6*. а) Определите символ Гильберта для поля степенных рядов $\mathbb{F}_p((t))$. Опишите его основные свойства.

b) Когда квадратичная форма над $\mathbb{F}_p((t))$ представляет ноль? Когда две формы над этим полем эквивалентны? Дайте ответы, аналогичные случаю поля \mathbb{Q}_p .

Задача 7°. Какие из следующих форм представляют ноль над \mathbb{Q} :

a)
$$x_1^2 + x_2^2 - 15(x_3^2 + x_4^2)$$
; b) $3x_1^2 + 2x_2^2 - 7x_3^2$; c) $3x_1^2 + 2x_2^2 - 7x_3^2 + 2x_2x_3 + 2x_3x_1 + 2x_1x_2$?

Задача 8°. Какие простые числа представимы следующими формами:

a)
$$x_1^2 + x_2^2$$
; b) $x_1^2 + 5x_2^2$; c) $x_1^2 - 5x_2^2$?

Задача 9°. Какие рациональные числа представимы следующими формами

a)
$$2x_1^2 - 5x_2^2$$
; b) $2x_1^2 - 6x_2^2 + 15x_3^2$?

Задача 10°. Найдите все рациональные решения уравнения $x^2 + y^2 - 2z^2 = 0$.

Задача 11. Какие из следующих форм эквивалентны над \mathbb{Q} ? Если формы эквиваленты, определите соответствующую замену координат.

- a) $x_1^2 15x_2^2$ и $3x_1^2 5x_2^2$;
- b) $x_1^2 82x_2^2$ и $2x_1^2 41x_2^2$;
- c) $x_1^2 + x_2^2 + 16x_3^2$ in $2x_1^2 + 2x_2^2 + 5x_3^2 2x_2x_3 2x_1x_3$.

Задача 12. При каких рациональных m формы $(m+1)(x_1^2+x_2^2+x_3^2)+mx_4^2$ и $x_1^2+x_2^2+x_3^2+m(m+1)x_4^2$ эквивалентны над \mathbb{Q} ?

Задача 13° (Теорема Лежандра). Докажите, что, если a,b,c — попарно взаимно простые целые числа, свободные от квадратов, и a,b,c не все одного знака, то квадратичная форма $ax^2 + by^2 + cz^2$ представляет ноль над $\mathbb Q$ тогда и только тогда, когда разрешимы сравнения $x^2 \equiv -bc \mod a$, $x^2 \equiv -ca \mod b$ и $x^2 \equiv -ab \mod c$.

Задача 14°. Пусть f и g регулярные квадратичные формы над \mathbb{Q} , эквивалентные над \mathbb{R} и над всеми \mathbb{Q}_p , за исключением, возможно, одного $p=p_0$. Покажите, что f и g эквивалентны над \mathbb{Q} .

Задача 15 (Конечные проективные плоскости). Назовем конечной проективной плоскостью два конечных множества — "множество точек" и "множество прямых" с отношением "точка лежит на прямой", удовлетворяющим двум свойствам: (1) две различные точки лежат на одной и только одной прямой; (2) две различные прямые пересекаются в одной и только одной точке.

- а) Покажите, что за исключением вырожденных случаев (например, когда существует только одна точка или только одна прямая) найдется такое число n, что всякая прямая содержит n+1 точку, а всякая точка лежит на n+1 прямой. Число n называется порядком проективной плоскости. Убедитесь, что число точек равно числу прямых и равно n^2+n+1 .
- b) Предположим, что существует проективная плоскость порядка n. Докажите, что квадратичные формы $\sum\limits_{i=1}^N x_i^2, \ (n+1)\sum\limits_{i=1}^N y_i^2 + 2\sum\limits_{1\leq i\leq j\leq N} y_iy_j$ и $z_1^2 + n\sum\limits_{i=2}^N z_i^2$ эквивалентны.
- с) Пусть n порядок проективной плоскости и $n \equiv 1 \mod 4$ или $n \equiv 2 \mod 4$. Покажите, что всякое нечетное простое число p, входящее в n в нечетной степени имеет вид p = 4n + 1.

Задача 16 (Слабая аппроксимационная теорема). Пусть $|\ |_n,\ n=1,\ldots,N$ – неэквивалентные нормирования поля $k,\ k_n$ — пополение поля k по норме $|\ |_n$. Покажите, что

образ поля k всюду плотен в $\prod_{n=1}^N k_n$. Иными словами, для любого набора элементов $\alpha_n \in k_n$ и $\epsilon>0$ найдется такой элемент $\xi\in k$, что $|\xi-\alpha_n|_n<\epsilon$ для $n=1,\ldots,N$.

Подсказка: постройте индукцией по N такое $\theta_n \in k$, что $|\theta_n|_n > 1$ и $|\theta_n|_m < 1$ при $m \neq n$.

Задача 17. а) Пусть $f(x_1,\ldots,x_n)$ — регулярная квадратичная форма над $\mathbb{Q}_p, n \geq 3$ и пусть $h(x_1,\ldots,x_n) = h_1x_1 + \cdots + h_nx_n$, где не все h_j равны нулю. Пусть b — решение уравнения f(b) = 0. Тогда в любой окрестности b найдется такое c, что f(c) = 0 и $h(c) \neq 0$. b) Пусть $S \subset V = \{\infty,2,3,5,7,11,\ldots\}$ — конечное подмножество. Предположим, что квадратичная форма f представляет ноль над \mathbb{Q} и для всех $v \in S$ задано такое $b_v \in \mathbb{Q}_v^n$, что $f(b_v) = 0$. Докажите, что для любого $\epsilon > 0$ найдется такое $b \in \mathbb{Q}^n$, что f(b) = 0 и $|b - b_v|_v < \epsilon$ для всех $v \in S$.

Задача 18 (Существование рациональных чисел с данными символами Гильберта). Пусть $V = \{\infty, 2, 3, 5, 7, 11, \dots\}$, $\{a_i\}_{i \in I}$ — конечное семейство элементов из \mathbb{Q}^* , а $\{c_{i,v}\}_{i \in I,v \in V}$ — семейство чисел, равных ± 1 . Наша цель доказать, что для того, чтобы существовало такое $x \in \mathbb{Q}^*$, что $(a_i,x)_v = c_{i,v}$ для всех $i \in I, v \in V$ необходимо и достаточно выполнение следующих условий: (1) почти все $c_{i,v}$ равны 1; (2) $\prod_v c_{i,v} = 1$ для всех $i \in I$;

(3) для любого $v \in V$ существует такое $x_v \in \mathbb{Q}_v^*$, что $(a_i, x_v)_v = c_{i,v}^v$ для всех $i \in I$.

- а) Убедитесь, что сформулированные условия являются необходимыми.
- b) Пусть $a_i \in \mathbb{Z}, \, S \subset V$ состоит из $\infty, 2$ и простых делителей чисел $a_i,$ а $T = \{v \in V \mid$ $c_{i,v}=-1$ для некоторого $i\in I\}.$ Предположим, что $S\cap T=\varnothing.$ Положим $a=\prod_i l$ и
- $m=8\prod_{l\in S,l\neq 2,\infty}l$ и пусть p простое число, $p\equiv a\mod m,\, p\not\in S\cup T.$ Убедитесь, что число x=apудовлетворяет условию задачи.
- с) Выведите из пункта b) и слабой аппроксимационной теоремы утверждение задачи в случае произвольных S и T.
- **Задача 19.** Покажите, что квадратичная форма ранга n над \mathbb{Q} с дискриминантом d, инвариантами Хассе $c_v, v \in V$ и сигнатурой (s, r) существует тогда и только тогда, когда (1) $c_v=1$ для почти всех $v\in V$ и $\prod_{v\in V}c_v=1$; (2) $c_v=1$, если n=1 или n=2, а образ d_v дискриминанта d в $\mathbb{Q}_v^*/(\mathbb{Q}_v^*)^2$ равен -1; (3) $r,s\geq 0$ и r+s=n (4) $d_\infty=(-1)^s$; (5)

 $c_{\infty} = (-1)^{s(s-1)}$.

 Π одсказка: разберите отдельно случаи n=1,2,3, пользуясь предыдущей задачей и слабой аппроксимационной теоремой. Общее утверждение докажите индукцией по п, рассматривая отдельно формы с сигнатурой (0,s) и (r,s), r > 1.

Задача 20 (Группа Витта). В этой задаче k — поле, $\operatorname{char} k \neq 2$.

- а) Пусть S абелева полугруппа с сокращением, т.е. на S задана коммутативная ассоциативная операция + такая, что $s_1 + s = s_2 + s$ влечет $s_1 = s_2$. Покажите, что существует единственная группа G и гомоморфизм полугрупп $\alpha \colon S \to G$ со следующим универсальным свойством: для любого морфизма полугрупп $\beta\colon S\to H$ существует единственный гомоморфизм групп $\gamma \colon G \to H$ такой, что $\gamma \circ \alpha = \beta$.
- b) Убедитесь, что классы эквивалентности невырожденных квадратичных форм над k образуют абелеву полугруппу с сокращением относительно операции прямой суммы \oplus . Группа G(k), получающаяся в результате применения конструкции из а), называется группой Гротендика поля k.
- с) Покажите, что фактор W(k) по подгруппе, порожденной классами эквивалентности гиперболических форм $Q(y_1,y_2)=y_1y_2$ может быть описан так: он состоит из классов эквивалентности невырожденных квадратичных форм над k, при этом две формы f и gпредставляют один элемент из W(k) тогда и только тогда, когда найдутся такие n и l, что $f \oplus (x_1x_2 + \cdots + x_{2n-1}x_{2n}) \sim g \oplus (y_1y_2 + \cdots + y_{2l-1}y_{2l})$. Группа W(k) называется группой Витта поля k.
- d) Докажите, что G(k) задается образующими $\langle a \rangle, a \in k^{\times}$, которые соответствуют формам ax^2 , и соотношениями $\langle a \rangle = \langle ab^2 \rangle$, $a,b \in k^{\times}$ и $\langle a \rangle + \langle b \rangle = \langle a+b \rangle + \langle ab(a+b) \rangle$, $a,b,a+b \in k^{\times}$. Подсказка: всякое соотношение имеет вид $\sum_{i=1}^n \langle a_i \rangle = \sum_{j=1}^n \langle b_j \rangle$. Разберите случаи n=1,2 и воспользуйтесь тем, что любые два ортогональных базиса можно соединить цепочкой ортогональных базисов, в которой на каждом шаге меняется не более двух векторов.
- е) Покажите, что W(k) задается образующими $\langle a \rangle, a \in k^{\times}$ и соотношениями $\langle a \rangle = \langle ab^2 \rangle$, $a, b \in k^{\times}, \langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle, a, b, a + b \in k^{\times} \text{ if } \langle 1 \rangle + \langle -1 \rangle = 0.$
- f) Определим тензорное произведение $(V_1 \otimes V_2, Q_1 \otimes Q_2)$ двух квадратичных форм (V_1, Q_1) и (V_2,Q_2) , задав билинейную форму, соответствующую $Q_1\otimes Q_2$, правилом $\phi(v_1\otimes v_2,u_1\otimes u_2)=$ $\phi_1(v_1, u_1)\phi_2(v_2, u_2)$. Убедитесь, что тензорное произведение определяет на W(k) структуру кольца.
- g) Вычислите $W(\mathbb{R})$ и $W(\mathbb{C})$.
- h) Покажите, что для нечетного q имеется изоморфизм $W(\mathbb{F}_q) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, если $-1 \in$ $(\mathbb{F}_q^{\times})^2$ и $W(\mathbb{F}_q) \cong \mathbb{Z}/4\mathbb{Z}$ иначе.
- i) Докажите, что при $p \neq 2$ имеет место изоморфизм $W(\mathbb{Q}_p) \cong W(\mathbb{F}_p) \times W(\mathbb{F}_p)$.

- j) Покажите, что $W(\mathbb{Q}_2) \cong \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- k) Докажите, что $W(\mathbb{Q})\cong\bigoplus_p W(\mathbb{F}_p)\oplus \mathbb{Z}/2\mathbb{Z}\oplus W(\mathbb{R})$, где сумма берется по всем нечетным простым p.
- l^*) Вычислите $W(\mathbb{F}_p((t)))$ при $p \neq 2$.
- **Задача 21***. Пусть k поле, char $k \neq 2$, K/k расширение поля k нечетной степени.
- а) Пусть f невырожденная квадратичная форма над k. Докажите, что, если f представляет ноль над K, то f представляет ноль над k.
- b) Пусть t независимая переменная над полем k, g и h квадратичные формы над k. Покажите, что g(x) + th(x) представляет ноль над k(t) тогда и только тогда, когда найдется такой элемент $a \in k^n$, $a \neq 0$, что g(a) = h(a) = 0.
- с) Пусть g и h квадратичные формы над k. Тогда система уравнений g(x) = h(x) = 0 имеет ненулевое решение над K тогда и только тогда, когда она имеет ненулевое решение над k.