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12 Общая теория относительности

Мы выяснили, что принцип эквивалентности может указывать на то,
что эффекты гравитации могут быть описаны в терминах нетривиаль-
ной метрики, и что по крайней мере одной из характеристик, отлича-
ющей нетривиальную метрику от метрики пространства Минковского,
является ее кривизна.

12.1 Уравнения ОТО

Для того, чтобы получить уравнения гравитационного поля, выберем
действие Гильберта

S[g] = − c3

16πκ

∫
d4x

√
−gR (12.1)

где R - скалярная кривизна. Численный коэффициент перед действием
произволен (а выбор знака заранее непонятен!), однако важно, что гра-
витационная постоянная κ - размерная величина в следующем смысле.

Метрика пространства-времени ds2 = gµν(x)dx
µdxν безразмерна, по-

этому кривизна имеет размерность ℓ−2 в единицах длины (две произ-
водные). Интеграл от кривизны по 4-мерному пространству-времени со-
ответственно имеет размерность квадрата длины ℓ2, и соответственно
[c]3ℓ2/κ ∼ [~], или

κ ∼ [c]3ℓ2/[~] (12.2)

В релятивистской системе единиц c = 1, а в квантовой ~ = 1, тогда
гравитационная постоянная κ сама имеет размерность квадрата длины.
Отвечающая ее величине в этих единицах длина Планка

α′ = ℓ2Pl =
κ~
c3

≈ (7 · 10−8) · (1 · 10−27)

27 · 1030
≈ 2.5 · 10−66cm2 (12.3)

т.е. ℓPl ∼ 10−33 см - очень мала1. Отметим, что в той же системе единиц
(c = 1, ~ = 1) константа электромагнитного взаимодействия (электриче-
ский заряд) безразмерна, т.е. является числом.

1Масштаб, на котором гравитационное взаимодействие становится “квантовым”
или сильным.
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Проварьируем действие Гильберта

δ

∫
d4x

√
−gR = δ

∫
d4x

√
−ggµνRµν =

=

∫
d4x

(
δgµνRµν

√
−g + δ

√
−ggµνRµν +

√
−ggµνδRµν

) (12.4)

Заметив, что δ
√
−g = − 1

2
√
−g

δ det gµν = −1
2

√
−ggµνδg

µν , получим

δ

∫
d4x

√
−gR =

∫
d4x

√
−gδgµν

(
Rµν − 1

2
gµνR

)
+

+

∫
d4x

√
−ggµνδRµν

(12.5)

Для последнего “плохого” члена к счастью верно, что

gµνδRµν =
1√
−g

∂µ
(√

−gW µ
)

W µ = gνλδΓµ
νλ − gνµδΓλ

νλ

(12.6)

и его можно отбросить, считая что мы отбрасываем поверхностные чле-
ны, где вариации переменных равны нулю. В формуле (12.6) легче всего
убедиться в локально-геодезической системе координат, где

∂λgµν = 0, ∂λg
µν = 0, Γλ

µν = 0

1√
−g

∂µ
(√

−gW µ
)
= ∂µW

µ = gνλ∂µδΓ
µ
νλ − gνλ∂λδΓ

σ
νσ =

= gνλδ (∂µΓ
µ
νλ − ∂λΓ

σ
νσ) =

Γ=0
gνλδRνλ

(12.7)

где, напомним,

Rµν = Rσ
µσν =

= ∂σΓ
σ
µν − ∂νΓ

σ
µσ + Γλ

µνΓ
σ
λσ − Γρ

µσΓ
σ
νρ

(12.8)

что означает равенство соответствующих тензоров в любой системе ко-
ординат.

Таким образом, из вариации действия Гильберта следует зануление
“тензора Эйнштейна”2 Rµν − 1

2
gµνR = 0, или же просто

Rµν = 0 (12.9)
2См. принцип Арнольда.
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т.е. уравнения Эйнштейна в пустом пространстве, означаюшие что оно
обязано быть риччи-плоским. Если же рассматривается гравитация, вза-
имодействующая с материей, то вариация полного действия

δ

(
− c3

16πκ

∫
d4x

√
−gR + S[matter; g]

)
= 0 (12.10)

приводит к уравнениям ОТО

Rµν − 1
2
gµνR =

8πκ

c4
Tµν (12.11)

где использовано определение δS[matter; g] = 1
2c

∫
d4x

√
−gδgµνTµν тензо-

ра энергии-импульса, как авриации любого действия по внешней метри-
ке.

• Действие Гильберта зависит не только от первых производных
∂λgµν , и уже этим отличется от канонических действий теории поля,
хотя ∫

d4x
√
−gR ≃

∫
d4x

√
−ggµν

(
Γλ
µρΓ

ρ
νλ − Γλ

µνΓ
ρ
λρ

)
(12.12)

(с точностью до поверхностного члена), где в правую часть уже
входят только первые производные (но она не является интегралом
от скалярной плотности!).

• Непротиворечивость уравнений (12.11) предполагает, что

∇µRµν = 1
2
∂νR (12.13)

вследствие ∇µTµν = 0 сохранения тензора энергии-импульса на
уравнениях движения.

• Кривизна окружающего нас пространства очевидно мала. Это озна-
чает, что в действии Гильберта можно было бы заменить кривизну
R её медленно-меняющейся функцией f(R) = f0 + f1R+ f2R

2 + . . .,
или

S[g] = − c3

16πκ

∫
d4x

√
−g

(
Λ +R + α′R2 + . . .

)
(12.14)
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(на самом деле уже квадратичных по кривизне инвариантов несколь-
ко: R2, RµνRµν , RµνλρRµνλρ, есть среди них “топологическая” комби-
нация в 4-мерии) RµνλρRµνλρ− 4RµνRµν +R2. В них слишком много
производных, и возникают они (а также остальные старшие степе-
ни), например, как поправки в эффективное действие гравитации
из теории струн.

Вариация постоянного члена даёт вклад в уравнения движения

Rµν − 1
2
gµνR = 1

2
gµνΛ +

8πκ

c4
Tµν (12.15)

где космологическая постоянная или “энергия вакуума” Λ ([Λ] = ℓ−2)
очень мала. На сегодняшний день считается, что

Λ < 0, L ∼ 1√
Λ

∼ 3 · 1028cm, (L/ℓPl)
2 ∼ 10123 (12.16)

а соответствующая плотность вакуумной энергии

ρvac =
εvac
c2

∼ c2

κ
|Λ| ∼ 10−29g/cm3 (12.17)

т.е. этот член может начинать давать вклад лишь на очень больших рас-
стояниях - масштабы галактик или скоплений галактик. Таким образом,
если во все это верить, на больших расстояниях Вселенная (R ≈ −Λ)
похожа на пространство постоянной кривизны.

В остальном - на более разумных, в том числе наблюдаемых рас-
стояниях, кривизна пространства-времени согласно ОТО определяется
наличием материи.

12.2 Тензор энергии-импульса материи

Вернемся к системе частиц в произвольной метрике с действием S[X; g] =
−mc

∫ √
gµνdXµdXν , вариация которого по метрике дает

δS[X; g] = −mc

∫
1

2
√
gµνdXµdXν

δgµν(X)dXµdXν =

= − 1

2c

∫
d4x

√
−gδgµν(x)mc2

∫
dXµdXν

ds
δ(4)(x−X) =

=
1

2c

∫
d4x

√
−gδgµν(x)mc2

∫
dXµdXν

ds
δ(4)(x−X)

(12.18)
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т.е.

Tµν = mc2
∫

dXµdXν

ds
δ(4)(x−X) = mc2

∫
dsUµUνδ

(4)(x−X) (12.19)

где Uµ = dXµ/ds - 4-скорость. В собственной системе отсчета ds = cdT ,
Xµ = (cT, 0), поэтому

Tµν = mc2
∫

dsUµUνδ(ct− cT )δ(3)(x) = mcδ(3)(x)UµUν
ds

dT
(12.20)

а для системы невзаимодействующих частиц надо заменить mcδ(3)(x) →∑
J mJcδ

(3)(x − XJ) = cρ(x). При этом компонента T00 = c2ρ(x) = ε(x)
представляет собой просто плотность энергии системы. Для макроско-
пических тел тензор энергии-импульса любят записывать в виде

Tµν = (p+ ε)UµUν − pgµν (12.21)

где p - давление.

12.3 Закон Ньютона

Вычислим нерелятивистский предел уравнений ОТО с помощью подста-
новки g00 = 1 + 2Φ(x)

c2
в Rµν − 1

2
gµνR = 8πκ

c4
Tµν , или

Rµ
ν =

8πκ

c4
(
T µ
ν − 1

2
δµνT

)
(12.22)

Для покоящейся массивной частицы единственная нетривиальная ком-
понента T 0

0 = Mc2δ(3)(x), так что

R0
0 =

4πκ

c4
T 0
0 =

4πκM

c2
δ(3)(x) (12.23)

Будем интересоваться в левой части равенства тоже только членами по-
рядка c−2 в R00 = ∂µΓ

µ
00 − ∂0Γ

µ
0µ + . . ., т.е. происходящими из простран-

ственных производных ∂ig00 (все остальные - более высокого порядка
малости). Тогда для символов Кристоффеля

Γi
00 = −1

2
gii∂ig00 + o

(
1

c2

)
=

1

c2
∂Φ

∂xi
+ o

(
1

c2

)
Γ0
00 = o

(
1

c3

)
, Γ · Γ = o

(
1

c4

) (12.24)
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и в уравнении для кривизны остается R0
0 = 1

c2
∆Φ, где ∆ =

∑
i=1,2,3

∂2

dx2
i

-
оператор Лапласа в 3-х пространственных измерениях. Таким образом

∆Φ = 4πκMδ(3)(x), Φ = −κM

|x| (12.25)

и мы получили нерелятивистский закон тяготения Ньютона.
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