Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 8 задач (каждый подпункт считается отдельной задачей). В случае решения большего количества задач дополнительные баллы также будут учтены.

На зачете разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, на задачи, разобранные на семинарах, и на сданные Вами задачи из листков.

Вариант 1

- **1.** Приведите пример ограниченного линейного оператора в пространстве ℓ^2 , имеющего незамкнутый образ.
- **2.** Снабдим пространство $C^n[a,b]$ нормой $||f||_{C^n} = \max_{0 \le k \le n} ||f^{(k)}||_{\infty}$, где $||f||_{\infty} = \sup_{t \in [a,b]} |f(t)|$.
- 1) Докажите полноту $C^n[a,b]$ относительно нормы $\|\cdot\|_{C^n}$.
- **2)** Полно ли $C^n[a,b]$ относительно нормы $\|\cdot\|_{\infty}$?
- **3)** Сепарабельно ли $C^n[a,b]$ относительно нормы $\|\cdot\|_{C^n}$?
- **3.** Найдите норму оператора $T: C[0,1] \to C[0,1]$, действующего по формуле

$$(Tf)(x) = f(0)e^x - \int_0^x t^2 f(t) dt + x f(x).$$

4. Выясните, плотна ли линейная оболочка системы функций $e_n(x) = e^{inx}$ $(n \in \mathbb{Z})$ в пространстве $L^2[a,b]$, если **1)** $b-a \leq 2\pi$; **2)** $b-a > 2\pi$.

Указание: разрешается пользоваться теоремой Вейерштрасса, согласно которой линейная оболочка этой системы плотна в пространстве $C_{2\pi}(\mathbb{R})$ непрерывных 2π -периодических функций на \mathbb{R} , снабженном равномерной нормой.

5. Пусть H - n-мерное гильбертово пространство, и пусть

$$F = \left\{ x = \sum_{k=0}^{\infty} x_k : x_k \in H^{\otimes k}, \ \|x\| = \left(\sum_{k=0}^{\infty} \|x_k\|^2\right)^{1/2} < \infty \right\}$$

- пространство Фока. Зафиксируем ортонормированный базис (e_1, \ldots, e_n) в H.
- 1) Докажите, что для каждого $i=1,\ldots,n$ существует единственный ограниченный линейный оператор $S_i\colon F\to F$, удовлетворяющий условию $S_i(x)=e_i\otimes x$ для всех $x\in H^{\otimes k}$ и всех $k\geqslant 0$.
- **2)** Зафиксируем $k\geqslant 0$ и положим $W_k=\{1,\ldots,n\}^k$. Для каждого $\alpha=(\alpha_1,\ldots,\alpha_k)\in W_k$ положим $S_\alpha=S_{\alpha_1}\cdot\ldots\cdot S_{\alpha_k}$. Докажите, что для любых $c_\alpha\in\mathbb{C}$ справедливо равенство

$$\left\| \sum_{\alpha \in W_k} c_{\alpha} S_{\alpha} \right\| = \left(\sum_{\alpha \in W_k} |c_{\alpha}|^2 \right)^{1/2}.$$

Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 8 задач (каждый подпункт считается отдельной задачей). В случае решения большего количества задач дополнительные баллы также будут учтены.

На зачете разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, на задачи, разобранные на семинарах, и на сданные Вами задачи из листков.

Вариант 2

- **1.** Приведите пример ограниченного линейного оператора в пространстве C[0,1], имеющего незамкнутый образ.
- **2.** Рассмотрим векторное пространство bv_0 , состоящее из всех числовых последовательностей $x=(x_n)_{n\in\mathbb{N}}$, удовлетворяющих условиям $\lim_{n\to\infty}x_n=0, \quad \sum_{n=1}^{\infty}|x_{n+1}-x_n|<\infty$. Введем на bv_0 норму $\|x\|_{bv_0}=\|x\|_{\infty}+\sum_{n=1}^{\infty}|x_{n+1}-x_n|$, где $\|x\|_{\infty}=\sup_{n\in\mathbb{N}}|x_n|$.
- **1)** Докажите полноту bv_0 относительно нормы $\|\cdot\|_{bv_0}$.
- **2)** Полно ли bv_0 относительно нормы $\|\cdot\|_{\infty}$?
- **3)** Сепарабельно ли bv_0 относительно нормы $\|\cdot\|_{bv_0}$?
- **3.** Найдите норму оператора $T \colon C[-1,1] \to C[-1,1]$, действующего по формуле

$$(Tf)(x) = f(0)\cos x + \int_{-1}^{0} t^{3} f(t) dt - \int_{0}^{1} t^{2} f(t) dt.$$

4. Найдите ортогональные дополнения следующих подпространств в $L^2[0,1]$: **1)** многочлены от x (где x — координата на \mathbb{R}) с нулевой суммой коэффициентов; **2)** многочлены от x^2 .

У казание: разрешается пользоваться теоремой Вейерштрасса, согласно которой пространство многочленов от x плотно в C[0,1] относительно равномерной нормы.

5. Пусть H - n-мерное гильбертово пространство, и пусть

$$F = \left\{ x = \sum_{k=0}^{\infty} x_k : x_k \in H^{\otimes k}, \ \|x\| = \left(\sum_{k=0}^{\infty} \|x_k\|^2\right)^{1/2} < \infty \right\}$$

— пространство Фока. Зафиксируем ортонормированный базис (e_1,\ldots,e_n) в H.

- 1) Докажите, что для каждого $i=1,\ldots,n$ существует единственный ограниченный линейный оператор $T_i\colon F\to F$, удовлетворяющий условиям $T_i(\mathbb{C})=0$ (где $\mathbb{C}=H^{\otimes 0}$) и $T_i(x\otimes \xi)=(x,e_i)\xi$ для всех $x\in H,\ \xi\in H^{\otimes k}$ и $k\geqslant 0$.
- **2)** Докажите, что для любых $c_1, \ldots, c_n \in \mathbb{C}$ справедливо равенство

$$\left\| \sum_{i} c_i T_i \right\| = \left(\sum_{i} |c_i|^2 \right)^{1/2}.$$