Линейные функционалы и двойственность-II

- **4.1.** Для следующих операторов $T\colon V\to V$ опишите их сопряженные $T'\colon V^*\to V^*$, а в тех случаях, когда V гильбертово пространство, и гильбертово сопряженные $T^*\colon V\to V$.
- 1) диагональный оператор в ℓ^p (где $1 \le p < \infty$) или в c_0 (см. задачу ДЗ.5.3);
- **2)** оператор умножения на ограниченную измеримую функцию в $L^p(X,\mu)$, где $1\leqslant p<\infty$ (см. задачу ДЗ.5.5);
- **3)** оператор T_r правого сдвига и оператор T_ℓ левого сдвига в ℓ^p (где $1 \leqslant p < \infty$) или в c_0 , действующие по правилу $T_r(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots); \ T_\ell(x_1, x_2, \ldots) = (x_2, x_3, \ldots).$
- **4)** оператор двустороннего сдвига в $\ell^p(\mathbb{Z})$ (где $1 \leq p < \infty$) или в $c_0(\mathbb{Z})$, действующий по правилу $(T_b(x))_i = x_{i-1} \ (i \in \mathbb{Z});$
- **5)** оператор «взятия первообразной» в $L^p[0,1]$, где $1 \le p < \infty$ (см. задачу 1.12);
- **6)** интегральный оператор Гильберта–Шмидта в $L^2(X,\mu)$ (см. задачу 1.14).

Пусть V — нормированное пространство. Напомним (см. лекцию), что аннулятором подмножества $M\subseteq V$ называется подпространство $M^{\perp}=\{f\in V^*: f(x)=0\ \forall x\in M\}\subseteq V^*, \text{ а } npeданнулятором$ подмножества $N\subseteq V^*$ называется подпространство $^{\perp}N=\{x\in V: f(x)=0\ \forall f\in N\}\subseteq V.$

- **4.2.** Пусть V нормированное пространство и $V_0 \subseteq V$ замкнутое векторное подпространство. Постройте изометрические изоморфизмы $(V/V_0)^* \cong V_0^{\perp}$ и $V_0^* \cong V^*/V_0^{\perp}$.
- **4.3.** Пусть V, W банаховы пространства, $T\colon V\to W$ ограниченный линейный оператор, $T'\colon W^*\to V^*$ его сопряженный оператор. Докажите следующие утверждения:
- 1) T сюръективен $\Longrightarrow T'$ топологически инъективен;
- **2)** T коизометричен $\Longrightarrow T'$ изометричен;
- **3)** T топологически инъективен $\iff T'$ сюръективен;
- 4) T изометричен $\iff T'$ коизометричен;
- **5)** T топологический изоморфизм $\iff T'$ топологический изоморфизм;
- **6)** T изометрический изоморфизм $\iff T'$ изометрический изоморфизм.
- **4.4. 1)** Пусть V нормированное пространство, $i_V \colon V \to V^{**}$ каноническое вложение. Исследуйте взаимосвязь между операторами $i_{V^*} \colon V^* \to V^{***}$ и $i_V' \colon V^{***} \to V^*$.
- **2)** Докажите, что если банахово пространство обладает *предсопряженным* (т.е. топологически изоморфно сопряженному к какому-то банахову пространству), то оно дополняемо в своем втором сопряженном.
- **3)** Докажите, что банахово пространство V рефлексивно $\iff V^*$ рефлексивно.
- **4)** Рефлексивны ли пространства ℓ^{∞} , $L^{\infty}(X,\mu)$?

Напомним, что коядро линейного оператора $T: V \to W$ определяется равенством $\operatorname{Coker} T = W / \operatorname{Im} T$.

- **4.5.** Пусть V, W банаховы пространства, $T \colon V \to W$ ограниченный линейный оператор с замкнутым образом.
- 1) Докажите, что сопряженный оператор $T': W^* \to V^*$ также имеет замкнутый образ.
- **2)** Докажите, что $\operatorname{Im} T = {}^{\perp}(\operatorname{Ker} T')$ и $\operatorname{Im} T' = (\operatorname{Ker} T)^{\perp}$.
- **3)** Постройте изометрические изоморфизмы $\operatorname{Ker} T' \cong (\operatorname{Coker} T)^*$ и $\operatorname{Coker} T' \cong (\operatorname{Ker} T)^*$.
- **4.6. 1)** Докажите, что если цепной комплекс C банаховых пространств точен, то точен и сопряженный комплекс C^* .
- 2) Пусть V, W банаховы пространства, $T: V \to W$ ограниченный линейный оператор. Предположим, что $\operatorname{Im} T' = (\operatorname{Ker} T)^{\perp}$. Докажите, что $\operatorname{Im} T$ замкнут (ср. с п. 2 задачи 4.5).
- 3) Докажите утверждение, обратное к утверждению п. 1.
- 4.7**. 1) Докажите, что импликации в пп. 1 и 2 задачи 4.3 можно обратить.
- **2)** Пусть V, W банаховы пространства, $T \colon V \to W$ ограниченный линейный оператор. Докажите, что $\operatorname{Im} T$ замкнут тогда и только тогда, когда $\operatorname{Im} T'$ замкнут (это усиливает п. 2 задачи 4.6).