Спектры операторов

Определение 6.1. Пусть V — банахово пространство и T — ограниченный линейный оператор в V. Положим

$$\sigma_p(T) = \{ \lambda \in \mathbb{C} : \operatorname{Ker}(T - \lambda \mathbf{1}) \neq 0 \},$$

$$\sigma_c(T) = \{ \lambda \in \mathbb{C} \setminus \sigma_p(T) : \overline{\operatorname{Im}(T - \lambda \mathbf{1})} = V, \operatorname{Im}(T - \lambda \mathbf{1}) \neq V \};$$

$$\sigma_r(T) = \{ \lambda \in \mathbb{C} \setminus \sigma_p(T) : \overline{\operatorname{Im}(T - \lambda \mathbf{1})} \neq V \}.$$

Множество $\sigma_p(T)$ называется точечным спектром T, множество $\sigma_r(T)$ — его остаточным спектром. Множество $\sigma_c(T)$ часто называют непрерывным спектром T; впрочем, иногда непрерывный спектр определяют по-другому.

- **6.1.** Пусть $\lambda = (\lambda_n)$ ограниченная числовая последовательность. Найдите $\sigma_p(T)$, $\sigma_c(T)$ и $\sigma_r(T)$ для диагонального оператора $T = M_{\lambda}$ (см. ДЗ-5.3), действующего в пространстве 1) ℓ^p при $1 \leq p < \infty$ или c_0 ; 2) ℓ^{∞} .
- **6.2.** Пусть (X, μ) пространство с мерой, f существенно ограниченная измеримая функция на X и M_f оператор умножения на f, действующий в $L^p(X, \mu)$ (см. ДЗ-5.5). Найдите $\sigma_p(M_f)$, $\sigma_c(M_f)$ и $\sigma_r(M_f)$ в случаях **1)** $p < \infty$; **2)** $p = \infty$.
- **6.3.** Оператор двустороннего сдвига $T_b: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ действует по формуле $(T_b(x))_i = x_{i-1}$ (где $i \in \mathbb{Z}$). Найдите $\sigma_p(T_b)$, $\sigma_c(T_b)$ и $\sigma_r(T_b)$. (Указание: удобно воспользоваться рядами Фурье.)
- **6.4.** Пусть $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ единичная окружность с мерой «длина дуги/ 2π ». Для фиксированного $\zeta \in \mathbb{T}$ определим оператор сдвига $T_{\zeta} \colon L^2(\mathbb{T}) \to L^2(\mathbb{T})$ формулой $(T_{\zeta}f)(z) = f(\zeta^{-1}z)$. Найдите $\sigma_p(T_{\zeta})$, $\sigma_c(T_{\zeta})$ и $\sigma_r(T_{\zeta})$.
- **6.5.** Найдите спектр оператора $T\colon L^2[-\pi,\pi]\to L^2[-\pi,\pi]$, действующего по формуле

$$(Tf)(t) = \int_{-\pi}^{\pi} \sin^2(t-s)f(s) ds.$$

- **6.6.** Что можно сказать про спектр проектора? ($\Pi o d c \kappa a s \kappa a$: проектор это то же самое, что идемпотентный элемент алгебры линейных операторов.)
- **6.7.** Докажите, что спектр биективной изометрии в банаховом пространстве содержится в \mathbb{T} .
- **6.8.** Докажите, что любой непустой компакт в \mathbb{C} (соответственно, в \mathbb{R} , в \mathbb{T}) является спектром некоторого ограниченного оператора (соответственно, ограниченного самосопряженного оператора, унитарного оператора) в гильбертовом пространстве.
- **6.9.** Пусть T ограниченный линейный оператор в банаховом пространстве V. Докажите, что **1)** $\sigma_p(T) \subseteq \sigma_p(T') \cup \sigma_r(T');$ **2)** $\sigma_c(T) \subseteq \sigma_c(T') \cup \sigma_r(T');$ **3)** $\sigma_r(T) \subseteq \sigma_p(T');$ **4)** $\sigma_p(T') \subseteq \sigma_p(T) \cup \sigma_r(T);$ **5)** $\sigma_c(T') \subseteq \sigma_c(T);$ **6)** $\sigma_r(T') \subseteq \sigma_p(T) \cup \sigma_c(T).$ Докажите, что если V рефлексивно, то **7)** $\sigma_c(T) = \sigma_c(T');$ **8)** $\sigma_r(T') \subseteq \sigma_p(T).$
- **6.10.** Пусть T ограниченный линейный оператор в гильбертовом пространстве. Сформулируйте и докажите соотношения между частями спектра операторов T и T^* , аналогичные соотношениям из предыдущей задачи.
- **6.11.** Пусть $V = \ell^p$ или c_0 . Операторы *правого* и *левого сдвига* $T_r, T_\ell \colon V \to V$ действуют по правилу $T_r(x) = (0, x_1, x_2, \ldots), \quad T_\ell(x) = (x_2, x_3, \ldots).$ Найдите σ_p, σ_c и σ_r для операторов T_r и T_ℓ в случаях **1)** $V = \ell^p, \ 1$ **2)** $<math>V = c_0;$ **3)** $V = \ell^1;$ **4)** $V = \ell^\infty.$

Определение 6.2. Ограниченный линейный оператор T в банаховом пространстве V называется *квазинильпотентным*, если $\sigma(T) = \{0\}$, или, эквивалентно, если $\|T^n\|^{1/n} \to 0$ при $n \to \infty$.

6.12. Пусть $H = \ell^2$ и $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in \ell^\infty$. Оператор

$$T_{\alpha} \colon H \to H, \quad T_{\alpha}(x) = (0, \alpha_1 x_1, \alpha_2 x_2, \ldots)$$

называется *оператором взвешенного сдвига*. (*Реклама*: такие операторы изучаются давно, но особую популярность приобрели в 90-х гг. прошлого века ввиду их важности для теории представлений компактных квантовых групп.)

- **1)** Вычислите $||T_{\alpha}||$.
- **2)** Вычислите $r(T_{\alpha})$. Для каких последовательностей $\alpha \in \ell^{\infty}$ оператор T_{α} квазинильпотентен? Приведите конкретный пример такой последовательности.
- **6.13.** Пусть $I=[a,b],\ H=L^2(I)$ и $K\in L^2(I\times I).$ Оператор Вольтерра $V_K\colon L^2(I)\to L^2(I)$ задается формулой

$$(V_K f)(x) = \int_a^x K(x, y) f(y) \, dy$$

Обратите внимание, что это частный случай интегрального оператора Гильберта–Шмидта из задачи 1.14. (*Реклама*: операторы Вольтерра образуют один из наиболее классических и давно изучаемых классов линейных операторов; они играют важную роль в теории интегральных уравнений, описывающих различные физические процессы.)

- 1) Докажите, что если функция K ограничена, то V_K квазинильпотентен.
- 2^*) Докажите, что V_K квазинильпотентен для любой $K \in L^2(I \times I)$.

Таким образом, интегральное уравнение Вольтерра второго рода $f = \lambda V_K f + g$ относительно неизвестной функции $f \in L^2(I)$ имеет единственное решение для любого $\lambda \in \mathbb{C}$ и любой $g \in L^2(I)$.

- **6.14. 1)** Докажите, что не существует ограниченных линейных операторов S,T в банаховом пространстве, удовлетворяющих соотношению [S,T]=ST-TS=1.
- **2)** Выведите из п. 1, что алгебра дифференциальных операторов вида $\sum_{k=0}^{n} a_k(x) \frac{d^k}{dx^k}$, где $a_k \in \mathbb{C}[x]$ (она называется *алгеброй Вейля*) не имеет представлений ограниченными операторами в ненулевых банаховых пространствах.
- **6.15*.** Пусть $q \in \mathbb{C} \setminus \{0\}$. Алгебраическим *квантовым тором* называется алгебра A_q с двумя обратимыми образующими u, v и соотношением uv = qvu. (Peклама: квантовый тор одна из простейших некоммутативных нётеровых алгебр, играющая важную роль в некоммутативной геометрии. Соотношения uv = qvu тесно связаны с *каноническими коммутационными соотношениями* Γ . Вейля в квантовой механике.)
- 1) Докажите, что если $|q| \neq 1$, то A_q не имеет представлений ограниченными операторами в ненулевых банаховых пространствах.
- **2)** Пусть |q| = 1. Постройте унитарные операторы U, V в пространстве $L^2(\mathbb{T})$, удовлетворяющие соотношению UV = qVU (они дают, таким образом, представление A_q в $L^2(\mathbb{T})$). Подсказка: см. задачи 6.2 и 6.4.
- 2) Пусть $|q|=1,\ U$ и V биективные изометрические линейные операторы в банаховом пространстве, удовлетворяющие соотношению UV=qVU. Найдите их спектры при условии, что q не является корнем из единицы.