
29.11.2013 Functional Analysis I Problem sheet 4

Problems marked with “-B” are optional. If you solve such problems, you will earn bonus

points.

4.1. Consider the composition of the canonical embedding ℓ1 → (ℓ1)∗∗ and the standard isomorphisms
(ℓ1)∗∗ ∼= (ℓ∞)∗ ∼= M(2N) (where M(2N) is the space of all finitely additive complex measures on 2N).
Describe the resulting embedding of ℓ1 into M(2N) by an explicit formula, and show that its image
consists precisely of σ-additive measures.

4.2. For each of the following functionals f on C[−1, 1] describe the associated measure µ ∈ M [−1, 1]
and the associated distribution function φ ∈ BV0[−1, 1]. Find the variation V 1

−1(φ) and make sure
that V 1

−1(φ) = ∥f∥.

(a) f(x) = x(−1); (b) f(x) = x(−1/2)− x(1/2); (c) f(x) =
1∫

−1/2

tx(t) dt− 2x(1).

4.3-B. Let (X,µ) be a measure space. Given f ∈ L1(X,µ), let νf denote the complex measure with
density f with respect to µ. Prove that ∥νf∥ = ∥f∥1.

4.4. Prove that the dimension of an infinite-dimensional Banach space is uncountable.

4.5. Give an example of a normed space X and a pointwise bounded sequence (fn) in X∗ such that
(fn) is not norm bounded.

4.6. Let X, Y, Z be normed spaces.
(a) Prove that a bilinear operator T : X × Y → Z is continuous if and only if there exists C > 0
such that ∥T (x, y)∥ 6 C∥x∥∥y∥ for all x ∈ X, y ∈ Y .
(b) Assume that either X or Y is complete. Prove that each separately continuous bilinear operator
X × Y → Z is continuous. (Hint: use the Uniform Boundedness Principle.)
(c) Does (b) hold without the completeness assumption?

4.7-B. Let G be a compact topological group, and let π be a representation of G on a Banach
space X. Suppose that π is continuous in the sense that the map G × X → X, (g, x) 7→ π(g)x, is
continuous. Prove that there exists an equivalent norm ∥ · ∥π on X with the property that for each
g ∈ G the operator π(g) is isometric with respect to ∥ · ∥π. (Hint: the easiest way to prove this is to
apply the Uniform Boundedness Principle; however, there exists a direct proof as well (see Test 1,
Module 1).

4.8. (a) Deduce the Open Mapping Theorem from the Inverse Mapping Theorem.
(b) Deduce the Inverse Mapping Theorem from the Closed Graph Theorem.
(c)-B Deduce the Uniform Boundedness Principle from the Closed Graph Theorem.
(d)-B Deduce the Inverse Mapping Theorem for reflexive spaces from the Uniform Boundedness
Principle.

Hint to (c). Given a pointwise bounded family {Ti : X → Y | i ∈ I} of bounded linear operators,
construct an operator from X to the space ℓ∞(I, Y ) of bounded Y -valued functions on I.

Hint to (d). To show that a bijective operator T ∈ B(X,Y ) is a topological isomorphism, it
suffices the prove that the preimage of the unit ball under T ∗ is bounded.

4.9. Give an example of a Banach space X, a normed space Y , and a bijective operator T ∈ B(X,Y )
such that T−1 is unbounded.

4.10-B. (a) Give an example of a normed space X, a Banach space Y , and a bijective operator
T ∈ B(X, Y ) such that T−1 is unbounded.
(b) Give an example of an absolutely convex, absorbing set S in a Banach space such that S does
not contain a 0-neighborhood.
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4.11. Let X be a normed space. Prove that (a) every finite-dimensional subspace and (b) every
closed subspace of finite codimension are complemented in X.

4.12-B. Prove that c0 is not complemented in ℓ∞.
Hint. Try the following plan:
(1) Prove that N can be represented as an uncountable union N =

∪
i∈I Ai of countable sets Ai such

that Ai ∩ Aj is finite for i ̸= j. (Hint: it is convenient to replace N by Q).
(2) Prove that for each f ∈ (ℓ∞)∗ that vanishes on c0 we have f(χAi

) = 0 for all but countably many
i ∈ I.
(3) Prove that there is no countable set of continuous linear functionals on ℓ∞/c0 that separates the
points of ℓ∞/c0.
(4) Prove that c0 is not complemented in ℓ∞.

4.13. (a) Suppose that a Banach space X is topologically isomorphic to Y ∗ for some Banach space
Y . Prove that X is complemented in X∗∗.
(b)-B Do Exercise 3.5-B by using (a) and Exercise 4.12-B.

4.14. Let X and Y be Banach spaces, and let S ∈ B(Y ∗, X∗). Do we always have S = T ∗ for some
T ∈ B(X, Y )?

4.15. Identify (ℓ1)∗ with ℓ∞ (see Exercise 3.1), and consider c0 as a subspace of (ℓ1)∗. Find ⊥c0 and
(⊥c0)

⊥.

4.16. LetX be a nonreflexive Banach space. Prove that there exists a closed vector subspaceN ⊆ X∗

such that N ̸= (⊥N)⊥.

4.17. Give an example of an injective operator T ∈ B(X, Y ) between Banach spaces X and Y such
that ImT ∗ is not dense in X∗. (Hint: X must be nonreflexive, see the lectures.) As a corollary, the
equality Im(T ∗) = (KerT )⊥ can fail in the nonreflexive case.

4.18-B (Johnson’s Lemma). LetX,Y, Z be Banach spaces, S ∈ B(X, Y ), T ∈ B(Y, Z), and TS = 0.
Prove that the following conditions are equivalent:

(1) the sequence X
S−→ Y

T−→ Z is exact, and ImT is closed;

(2) the sequence Z∗ T ∗
−→ Y ∗ S∗

−→ X∗ is exact, and ImS∗ is closed.

As a corollary, a chain complex of Banach spaces is exact if and only if the dual complex is exact.

4.19-B (Serre’s Lemma). Let X, Y, Z be Banach spaces, S ∈ B(X, Y ), T ∈ B(Y, Z), and TS = 0.
Assume that S and T have closed images. Construct an isometric isomorphism (KerT/ ImS)∗ ∼=
KerS∗/ ImT ∗.

As a corollary, if C is a chain complex of Banach spaces such that all the maps Cn+1 → Cn have
closed images, then Hn(C∗) ∼= Hn(C)∗.

4.20-B. Let X be a Banach space, and let X0 ⊆ X be a closed vector subspace. Prove that X is
reflexive if and only if X0 and X/X0 are reflexive.
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