Задачи для экзамена

Здесь предложены задачи, многие из которых будут вам предложены на экзамене (возможно с незначительными изменениями). Экзамен будет устный. В билете будет предложено 2 задачи (каждый пункт в данном листочке считается отдельной задачей).

- 1. Пусть V представление группы G с характером χ . Докажите, что
 - (a) кососимметрические тензоры $\Lambda^k V$ и симметрические тензоры $S^k V$ образуют представление той же группы G.
 - (b) Напомним, что $e_k = \sum_{i_1 < \ldots < i_k} x_{i_1} \ldots x_{i_k}$ элементарные симметрические многочлены, $h_k = \sum_{i_1 \leq \ldots \leq i_k} x_{i_1} \ldots x_{i_k}$ полные симметрические многочлены, $p_k = \sum x_i^k$ ньютоновские суммы.
 - Докажите, что $e_k = \sum_{\rho \vdash k} (-1)^{n-l(\rho)} \frac{p_\rho}{z_\rho}$, соответственно, $h_k = \sum_{\rho \vdash k} \frac{p_\rho}{z_\rho}$.
 - (c) значения характеров на элементе $g \in G$ в представлениях $\Lambda^2 V, \, S^2 V, \, V \otimes V$ равны $\frac{\chi(g)^2 \chi(g^2)}{2}, \, \frac{\chi(g)^2 + \chi(g^2)}{2}, \, \chi(g)^2.$
 - (d) пользуясь выражением элементарных симметрических функций через функции Ньютона, докажите, что значение характера представлений $\Lambda^k(V)$ и $S^k(V)$ на элементе g выражается через $\chi(g), \chi(g^2), \ldots, \chi(g^k)$. Найдите это выражение.
- 2. Покажите, что если группа G имеет абелеву подгруппу индекса m, то размерность её неприводимого представления не больше чем m. Указание: Докажите, что любое неприводимое представление является подпредставлением в индуцированном с подгруппы.
- 3. Пусть H, K две подгруппы в группе G. \mathbb{C} обозначает тривиальное представление. Докажите, что размерность пространства гомоморфизмов $\dim Hom_G(Ind_K^G\mathbb{C}, Ind_H^G)$ равна количеству K-орбит на множестве левых смежных классов G/H.
- 4. Докажите, что для цепочки вложенных групп $K \subset H \subset G$ и произвольного представления V имеется изоморфизм представлений $Ind_H^G(Ind_K^HV)$ и Ind_K^GV .
- 5. Вычислите значение характера на цикловом типе $\rho \vdash n$ у индуцированного представления
 - (a) $Ind_{S_{n-1}}^{S_n}\mathbb{C}^{n-1}$, где \mathbb{C}^{n-2} симплициальное представление S_{n-1} . То есть \mathbb{C}^{n-2} есть гиперплоскость $e_1+\ldots+e_{n-1}=0$ в пространстве с базисом e_1,\ldots,e_{n-1} .
 - (b) $Ind_{S_{n-1}}^{S_n} \Lambda^2 \mathbb{C}^{n-2}$,
 - (c) $Ind_{\mathbb{Z}_n}^{S_n}\mathbb{C}_{\xi}$, где \mathbb{C}_{ξ} —одномерное представление, в котором образующая действует умножением на примитивный корень n-ой степени из единицы ξ . Omeom: значение может быть отлично от нуля только на цикловом типе $(d)^{n/d}$, где d-делитель числа n и равно $\mu(d)\cdot(n-1)!$, где μ функция Мёбиуса.
 - (d) индуцированное с тривиального характера $Ind_{\mathbb{Z}_n}^{S_n}\mathbb{C}.$
 - (e) $Ind_{D_n}^{S_n}\mathbb{C}_{\xi}^2$, где \mathbb{C}_{ξ}^2 неприводимое двумерное представление группы диэдра, в котором одно из собственных значений поворота равно ξ .
- 6. Вычислите размерность пространства S_n -эквивариантных отображений $Hom_{S_n}(\Lambda^k\mathbb{C}^n, \Lambda^m\mathbb{C}^n)$. Выведите отсюда, что представление $\Lambda^k\mathbb{C}^{n-1}$ неприводимо для k < n.
- 7. Разложите на неприводимые представление группы S_4 на векторном пространстве с базисом из множества X всевозможных пар непересекающихся подмножеств в множестве $\{1,2,3,4\}$ мощностей 2 и 1. То есть $X = \{\{1,2\} \sqcup \{3\},\{1,3\} \sqcup \{4\},\ldots,\{i_1,i_2\} \sqcup \{i_3\},\ldots\}$.

- 8. Пусть $\lambda = \{\lambda_1 \geq \ldots \geq \lambda_n\}$ и $\mu = \{\mu_1 \geq \ldots \geq \mu_n\}$ две диаграммы Юнга (два разбиения числа n), такие что первое ненулевое число $\lambda_i \mu_i$ положительно. Докажите, что не существует нетривиальных сплетающих операторов между представлениями $U_{\lambda} := Ind_{S_{\lambda_1} \times \ldots}^{S_n} \mathbb{C}$ и $W_{\mu} := Ind_{S_{\mu_1^t} \times \ldots}^{S_n} Sgn$ (где за μ^t обозначена транспонированная диаграмма).
- 9. Пусть $ch_n: Rep(S_n) \to \mathbb{Z}[x_1, \dots, x_n, \dots]^{S_{n+\cdots}}$ характеристическое отображение, которое переводит дельта-функцию на классе сопряженности с цикловым типом $\rho \vdash n$ в симметрическую функцию $\frac{p_{\rho_1} \dots p_{\rho_2} \dots}{z_{\rho}}$, где z_{ρ} размерность стабилизатора элемента в классе сопряженности. Докажите, что $ch_{n+m}(Ind_{S_n \times S_m}V \otimes W) = ch_n(V) \cdot ch_m(W)$.
- 10. Напомним, что группой Гейзинберга $Heis_N$ мы называем группу унитреугольных 3×3 -матриц $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ над вычетами по модулю N: $a,b,c \in \mathbb{Z}/N\mathbb{Z}$.
 - (a) Вычислите размерности и количество неприводимых представлений для группы Гейзенберга $Heis_N$.
 - (b) Опишите эти представления явно.
- 11. (а) Опишите размерности неприводимых представлений группы G порядка pq, где p,q различные простые числа.
 - (b) Докажите, что любое неодномерное неприводимое представление индуцировано с одномерного представления нормальной подгруппы. Для каких одномерных представлений соответствующие индуцированные представления изоморфны?
- 12. Пусть $G = \mathbb{Z}_p \ltimes \mathbb{Z}_q^{\times p}$, где образующая циклической группы \mathbb{Z}_p действует перестановкой множителей в нормальной подгруппе $\mathbb{Z}_q \times \ldots \times \mathbb{Z}_q$.
 - (а) Разложите на неприводимые представление, индуцированное с одномерного представления нормальной подгруппы.
 - (b) Опишите все неприводимые представления группы G.
- 13. Напомним, что мультипликативная группа поля из q элементов циклическая, а, значит, существует автоморфизм $\varphi \in Aut(\mathbb{Z}_q)$ степени q-1. Пусть d некоторый делитель числа q-1. Определим полупрямое произведение групп $\mathbb{Z}_{kd} \ltimes \mathbb{Z}_q$ как группу, порожденную элементами a,b и соотношениями $a^{kd}=b^q=1$ и $aba^{-1}=\varphi^{q/d}(b)$. Опишите неприводимые представления данной группы.
- 14. Опишите разложение на неприводимые ограничение неприводимого представления симметрической группы S_n на знакопеременную подгруппу A_n . Выведите отсюда классификацию неприводимых представлений A_n .
- 15. Опишите размерности неприводимых представлений группы $SL_2(\mathbb{F}_q)$ для (a) q=3, (b) q=5.
- 16. Грассманианом $Gr_{\mathbb{k}}(k,n)$ называется множество k-мерных подпространств в n-мерном пространстве над полем \mathbb{k} . Заметим, что для конечного поля $\mathbb{k} = \mathbb{F}_q$ грассманиан является конечным множеством, на котором естественно действует группа $GL_n(\mathbb{F}_q)$.
 - (a) Опишите множество $GL_n(\mathbb{F}_q)$ эквивариантных гомоморфизмов между $\mathbb{C}[Gr(k,n)]$ и $\mathbb{C}[Gr(m,n)]$.
 - (b) Разложите на неприводимые представление $\mathbb{C}[Gr(k,n)]$.
- 17. (a) Опишите пространство классов сопряженности для $GL_2(\mathbb{F}_q)$.
 - (b) Вычислите характер представления $GL_2(\mathbb{F}_q)$, индуцированного с одномерного представления подгруппы верхнетреугольных матриц.